
1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

Copyright © 2016 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending an email to pubs-permissions@ieee.org.

1

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 1

Fast Full-Search Equivalent Pattern Matching
Using Asymmetric Haar Wavelet Packets

Wanli Ouyang*, Member, IEEE, Tianle Zhao*, Wai-kuen Cham, Senior Member, IEEE and Liying Wei

Abstract—Pattern matching is widely used in signal processing,
computer vision, image and video processing. One efficient
approach is to perform pattern matching in a transform domain
that has good energy packing ability and so allows early rejection
of most mismatched candidates. Calculating the transforms of
pixels in sliding windows requires much computation, and so
fast algorithms are employed. Existing methods require O(u)
additions per pixel for projecting input pixels onto u 2D basis
vectors. In this paper, we propose a new 2D transform, called
asymmetric 2D Haar transform (A2DHT), and extend it to
wavelet packets that contain exponentially large number of bases.
A basis selection algorithm is then proposed to search for the
optimal basis in the wavelet packets. A fast algorithm is also
developed which can compute u projection coefficients with
only O(log u) additions per pixel. Results of experiments show
that the proposed fast algorithm and the proposed transform
can significantly accelerate the full-search equivalent pattern
matching process and outperform state-of-the-art methods.

Index Terms—Fast algorithm, pattern matching, Haar wavelet,
wavelet packets.

I. INTRODUCTION

PATTERN matching, also called template matching, is the
procedure of seeking a required pattern or template in a

given signal. For pattern matching in images, this procedure
is illustrated by Fig. 1. Pattern matching has applications in
manufacturing for quality control [1], image based rendering
[2], image compression [3], object detection [4], super res-
olution [5], texture synthesis [6], block matching in motion
estimation [7], [8], image denoising [9], [10], [11], road/path
tracking [12], mouth tracking [13], image matching [14],
action recognition [15] and tone mapping [16].

Since pattern matching is a time-consuming task, many fast
algorithms have been proposed. These fast algorithms can be
divided into full-search-equivalent algorithms and full-search-
nonequivalent algorithms. Full-search-equivalent algorithms
guarantee to obtain the same result as that of a brute-force
full search, which examines all possible candidates, while full-
search-nonequivalent algorithms do not have this guarantee.
Full-search-equivalent algorithms run much faster than a
brute-force full search. The algorithms proposed in [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27] and [28]
are FS-equivalent algorithms. Full-search-nonequivalent al-
gorithms generally run even faster. The algorithms proposed in
[29], [30], [31], [32], [33], [34] and [35] are FS-nonequivalent

The authors are with the Department of Electronic Engineering, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong.

E-mail: {wlouyang,tlzhao,wkcham}@ee.cuhk.edu.hk, weiliying101@gmail
.com.

* indicates equal contribution.
Manuscript received ...

algorithms. The scope of this paper is limited to the study of
full-search-equivalent algorithms.

In this paper, we use a new asymmetric two-dimensional
Haar transform (A2DHT). Since the sums of pixel values
within rectangular regions of an image are buildings block
of this transform, a method called fast strip sum is proposed
which computes each of the sums by one addition. With the
fast strip sum method, we develop an algorithm that computes
u A2DHT coefficients by O(log u) additions per pixel on
sliding windows. A FS-equivalent pattern matching algorithm
in the transform domain is then developed, which allows
early rejection of most mismatched candidates and hence runs
very fast. Besides, we extend the A2DHT to wavelet packets
that contain exponentially large number of bases. Calculating
transforms specified by these bases has almost the same
computationally complexity as that of the original A2DHT.
Further more, we propose a selection algorithm to choose the
transform that best fits the pattern matching task. Results of
experiments show that pattern matching using the proposed
algorithm is faster than existing FS-equivalent algorithms, and
for pattern matching of images of natural scenes the A2DHT
is optimal among all bases contained in the wavelet packets
mentioned above.

The main contributions of this paper include: 1) the proposal
of the A2DHT and its extension to wavelet packet bases;
2) the development of the fast strip sum method and the
corresponding buffering strategy that are used to calculate
the sums of pixel values within rectangular regions of an
image; 3) the proposal of an algorithm that requires O(log u)
additions per pixel to compute u A2DHT coefficients on
sliding windows; 4) the proposal of a very fast FS-equivalent
algorithm in the transform domain; and 5) the proposal of a
basis selection algorithm, which when applied to natural scene
images proves the optimality of the A2DHT.

.

.

.

Image

Pattern

Candidate

window

Matched

window
.

.

tx

)0(

wx

)1(

wx

)(j

wx

Fig. 1. Pattern matching in image ‘couple’. We represent the pattern
by vector x⃗t and represent the candidate windows by vectors x⃗

(0)
w ,

x⃗
(1)
w , . . . , x⃗

(j)
w , . . . , x⃗

(W−1)
w .

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 2

The paper is organized as follows. Section II introduces
some related works and defines rectangle sum, integral image
as well as the pattern matching problem. Section III discusses
in detail the strip sum method and analyses the computation
and memory required by the strip sum method when com-
puting rectangle sums. Section IV proposes the A2DHT and
analyses its computational complexity. In the same section, we
show in detail the extension of the A2DHT to wavelet packet
bases as well as the selection algorithm that can efficiently
search the wavelet packet bases. Section V gives experimental
results. Finally, Section VI draws conclusions.

II. RELATED WORK

In this section, we introduce existing techniques and con-
cepts commonly used by many fast algorithms, which include
integral image and rectangle sum techniques [36], [33], [37],
as well as problem settings and basic ideas of transform
domain pattern matching. These techniques and concepts are
preliminaries to understand the algorithms in Section III and
Section IV.

A. Integral Image and Rectangle Sum
Denote by x(j1, j2) the pixel value at position (j1, j2) of a

J1 × J2 image, where 0 ≤ j1 < J1 and 0 ≤ j2 < J2. The
integral image ii(j1, j2) is defined as,

ii(j1, j2) =

j1−1∑
u=0

j2−1∑
v=0

x(u, v). (1)

A rectangle in an image is specified by,

rect = (j1, j2, N1, N2), (2)

where (j1, j2) is the coordinate of the upper left corner of
the rectangle in the image, N1 and N2 denote the width and
height of the rectangle, respectively, 0 ≤ j1 < J1 −N1, 0 ≤
j2 < J2 − N2, and N1, N2 > 0. See Fig. 2 for a graphical
illustration. The sum of pixel values within a rectangle rect
is called rectangle sum, denoted by rs(rect), in this paper.

Viola and Jones found in [36] that the integral image can
be computed at the cost of 2 additions per pixel. Moreover,
given the integral image, the rectangle sum rs(rect) can be
computed at the cost of 3 additions per pixel as follow,

rs(rect) =

j1+N1−1∑
u=j1

j2+N2−1∑
v=j2

x(u, v)

= ii(j1 +N1, j2 +N2) + ii(j1, j2)

− ii(j1, j2 +N2)− ii(j1 +N1, j2).

(3)

Fig. 2. An example of a rectangle rect = (j1, j2, N1, N2) in a J1 by J2
image x(u, v), where (j1, j2) is the coordinate of the upper left corner, N1

and N2 are the width and height of the rectangle, respectively.

Note that one subtraction is considered to be one addition
regarding the computational complexity in this paper.

Rectangle sums and Haar-like features have been widely
used in many applications such as object detection [36], [38],
[39], [40], [41], object classification [42], pattern matching
[24], [23], [33], feature point based image matching [43]
and texture mapping [44]. Porikli utilized the integral image
method to design a fast algorithm for computing the histogram
in [45]. Since the work in [44], it has been considered that
at least 3 additions are required to obtain the rectangle sum
using the summed area table in [44], [37] or the integral
image method in [36]. The authors of [28] proposed the image
square sum technique, which is specifically designed for the
A2DHT to accelerate the calculation of the projection values.
Calculation and caching of these square sums require lots
of time and memory. The fast pattern matching algorithm
proposed in [28] is in some cases comparable to the fast pattern
matching algorithm proposed in this paper.

B. Transform Domain Pattern Matching

Suppose an N1 × N2 pattern is to be sought in a given
image as shown in Fig. 1. The pattern will be compared with
candidate windows of the same size in the image. Denote
by W the number of candidate windows. We represent a
pattern as a vector x⃗t of length N and represent jth candidate
windows as x⃗

(j)
w , where j = 0, 1, . . . ,W −1 and N = N1N2.

Subscripts ·t and ·w denote pattern and window, respectively.
For example, if a 32×32 pattern is sought in a 256×256 image,
we have N = 1024 and W = (256− 32 + 1)2 = 50625. The
distance between x⃗t and x⃗

(j)
w , which is denoted by d(x⃗t, x⃗

(j)
w),

is a measure of the dissimilarity between x⃗t and x⃗
(j)
w . The

smaller is d(x⃗t, x⃗
(j)
w), the more similar are x⃗t and x⃗

(j)
w .

There are two widely used goals for FS in pattern matching:
Goal 1. find all candidate windows with d(x⃗t, x⃗

(j)
w) < T for

a given threshold T ;
Goal 2. find the window that has the minimum d(x⃗t, x⃗

(j)
w)

among all candidate windows.
Goal 1 is adopted by [19], [23], [20] and [24]. Goal 2 is
adopted by [25], [27], [46], [47] and in the source code of
[19]1. Note that algorithms adopting Goal 1 can be modified
to deal with Goal 2 using the approaches proposed in [25],
[19], [27]. In this paper, we focus on Goal 1.

Most transform domain pattern matching algorithms use
sum of squared differences (SSD) as distance measure [19],
[20], [21]. As pointed out in [19], although there are arguments
against SSD as a dissimilarity measure for images, it is still
widely used due to its simplicity. Discussions on SSD as a
dissimilarity measure can be found in [48], [49], [50].

A transform that projects a vector x⃗ ∈ RN onto a linear
subspace spanned by U(≪ N) basis vectors v⃗(0), . . . v⃗(U−1)

can be represented as follows:

y⃗ = Vx⃗ = [v⃗(0) . . . v⃗(U−1)]T x⃗, (4)

where ·T denotes matrix transposition, vector x⃗ of length N is
called input window, vector y⃗ of length U is called projection

1Available on http://www.faculty.idc.ac.il/toky/software/software.htm.

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 3

TABLE I
TRANSFORM DOMAIN PATTERN MATCHING

Overall procedure:
Initialise Sw as the set of all candidate windows x⃗

(j)
w ;

For u = 1 to UM :{
For x⃗(j)

w in Sw: {
Project x⃗t and x⃗

(j)
w to obtain Vx⃗t and Vx⃗

(j)
w , respectively;

Remove x⃗
(j)
w from Sw , if ||Vx⃗t −Vx⃗

(j)
w ||2 > T ;

}
}
The candidate windows remained in Sw undergo full search.

value vector, the U elements in vector y⃗ are called projection
values and V is a U ×N matrix of which the rows are the U
orthogonal basis vectors v⃗(i) of length N , i = 0, . . . , U − 1.
In [19], [51], the transform is called projection. Basis vector
is called projection kernel in [19] and called filter kernel in
[20]. In the followings, we show how to use the transform in
pattern matching tasks.

As proved in [19], the following inequality holds when the
u basis vectors in V are orthonormal,

||x⃗t − x⃗(j)
w ||2≥||Vx⃗t −Vx⃗(j)

w ||2. (5)

Thus ||Vx⃗t − Vx⃗
(j)
w ||2 is the lower bound of ||x⃗t − x⃗

(j)
w ||2.

Denote the set of candidates as Sw, which initially contains
all candidates. According to (5), if ||Vx⃗t − Vx⃗

(j)
w ||2 > T ,

then ||x⃗t − x⃗
(j)
w ||2 > T , and we can safely remove candidate

window x⃗
(j)
w from Sw. Therefore, ||Vx⃗t −Vx⃗

(j)
w ||2 > T acts

as the rejection condition for rejecting mismatching windows.
The procedure of transform domain pattern matching is

summarized in Table I. At each iteration of u, where u
increases from 1, x⃗t and the remaining candidates x⃗

(j)
w in

Sw are projected onto transform domain using V and the
rejection condition ||Vx⃗t −Vx⃗

(j)
w ||2 > T is checked. Finally,

when u reaches a sufficiently large number which is denoted as
UM , the iteration terminates and then the remaining candidate
windows in Sw undergo FS to find out the matched windows.
Since the matched windows will not be rejected by the
rejection condition and will be found by FS, such pattern
matching approach is FS-equivalent. The u basis vectors
v⃗(0), . . . , v⃗(u−1) in V are selected from the U orthonormal
vectors v⃗(0) . . . v⃗(U−1). For example, the pattern matching
algorithm in [8] selects the u Walsh Hadamard Transform
(WHT) basis vectors having the lowest frequencies.

According to [19], pattern matching using WHT as the
transform is almost two orders of magnitude faster than FS.
Besides, with proper modifications, transform domain pattern
matching are able to deal with distortions such as illumination
changes, contrast changes and geometric distortions such as
rotations and small affine coordinate transforms [14]. Because
of these advantages, transform domain pattern matching has
been used for block matching in motion estimation for video
coding [7], [8], road/path tracking [12], wide baseline image
matching [14], texture synthesis [52] and augmented reality
[53].

Hel-Or and Hel-Or’s algorithm in [19] requires 2N − 2
additions per pixel to compute all WHT projection values in
each window of size N . In the worst case, however, their

algorithm requires O(logN) additions per pixel to obtain one
projection value. Following this work, the Gray-Code Kernel
(GCK) algorithm proposed in [20] requires 2u additions per
pixel to obtain u projection values. Later we developed a fast
algorithm that requires about 3u/2 + 1 additions per pixel to
obtain u projection values [21]. However, the computational
complexity of these algorithms are O(u) per pixel. In this
paper, we propose a new transform whose computational
complexity is O(log u) per pixel.

A FS nonequivalent pattern matching algorithm using
nonorthogonal Haar-like features is proposed in [35]. However,
[20] shows that WHT is better than the nonorthogonal Haar-
like features in pattern matching. In this paper, we propose
an orthogonal Haar-like transform A2DHT for FS-equivalent
pattern matching.

III. THE FAST ALGORITHM FOR COMPUTING RECTANGLE
SUM

In this section, the fast algorithm for computing rectangle
sum is introduced. Rectangle sum is a building block of
the Haar-like transform proposed in Sec. IV. Analysis of its
computational complexity and memory requirement provided
in this section shows that using this fast algorithm can reduce
the computational complexity of the matching process.

A. Computation of Rectangle Sum by Strip Sum
Define horizontal strip sum hss(j1, j2, N2) as:

hss(j1, j2, N2) =

j1−1∑
u=0

j2+N2−1∑
v=j2

x(u, v). (6)

Hence, hss is represented by the upper right corner (j1−1, j2)
and height N2. Fig. 3 shows the hss(j1 + N1, j2, N2) and
hss(j1, j2, N2). hss(j1, j2, N2) can be obtained by one addi-
tion per pixel as follows using the integral image ii(j1, j2):

hss(j1, j2, N2) =

j1−1∑
u=0

j2+N2−1∑
v=0

x(u, v)−
j1−1∑
u=0

j2−1∑
v=0

x(u, v)

= ii(j1, j2 +N2)− ii(j1, j2).

(7)

We can compute rectangle sums rs(j1, j2, N1, N2) and
rs(j1, j2, N

′
1, N2) (N1 ̸= N ′

1) from strip sums as follows
using (3) and (7):

rs(j1, j2, N1, N2)

= hss(j1 +N1, j2, N2)− hss(j1, j2, N2),

rs(j1, j2, N
′
1, N2)

= hss(j1 +N ′
1, j2, N2)− hss(j1, j2, N2).

(8)

As shown in (8), only one addition is required to compute
the rectangle sum rs(j1, j2, N1, N2) from the strip sums
hss(j1+N1, j2, N2) and hss(j1, j2, N2). Fig. 3 illustrates the
computation.

The rs(j1, j2, N1, N2) and rs(j1, j2, N
′
1, N2) in (8) have

the same height N2 but have different width (N1 ̸= N ′
1).

They both use the hss(j1, j2, N2) for the computation. Fig.
4 shows the relationship between rs(j1, j2, N1, N2) and
rs(j1, j2, N

′
1, N2). Thus one strip sum hss(j1, j2, N2) is uti-

lized for the computation of two rectangle sums of sizes
N1 × N2 and N ′

1 × N2 in (8). In general, if hss(j1, j2, N2)

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 4

N2

(0,0)

j2

j1 N1

N2

(0,0)

j2

j1 N1
N2

(0,0)

j2

j1 N1

hss(j1, j2, N2)

hss(j1+N1, j2, N2)

rs(j1, j2, N1, N2)

+

+

Fig. 3. Horizontal strip sum hss and rectangle sum rs on the image. Only
one addition is required to compute rs(j1, j2, N1, N2) from the two hss
using (8).

N2

(0,0)

j2

j1

N1'

N1

rs(j1, j2, N1, N2) rs(j1, j2, N1', N2)

Fig. 4. Rectangle sums sharing the same height N2. The two rectangle sums
can use the same strip sum for computation.

has been provided on all pixel locations (j1, j2), we can use
it to obtain rectangle sums having any width N1 and the fixed
height N2 at any pixel position by one addition. This procedure
of using strip sums for computing a rectangle sum is shown
in Table II.
hss is used for computing rectangle sums having the

same height N2 in (8). Similarly, strip sum can be used for
computing rectangle sums having the same width N1. And
we can use the vertical strip sum vss for computing rectangle
sums having any height N2 and fixed width N1 as follows:

rs(j1, j2, N1, N2) = vss(j1, j2 +N2, N1)− vss(j1, j2, N1),

where vss(j1, j2, N1) =

j1+N1−1∑
u=j1

j2−1∑
v=0

x(u, v)

= ii(j1 +N1, j2)− ii(j1, j2).

(9)

B. Computational Complexity Analysis

The algorithm and the overall computation required by strip
sum for computing one rectangle sum are summarised as
follows:

1) prepare the integral image by two additions per pixel;
2) prepare the strip sum using (7) by one addition per pixel;
3) obtain the rectangle sum from strip sum using (8) by one

addition per pixel.
Suppose r rectangle sums of different sizes are computed

on each pixel position. Let these r rectangle sums have nW
different widths and nH different heights. As illustrated in
Table II, one horizontal strip sum is required for computing
rectangle sums sharing the same height. Hence, nH horizontal

TABLE II
PSEUDO-CODE SHOWING THE UTILIZATION OF STRIP SUM FOR

COMPUTING RECTANGLE SUMS SHARING THE SAME HEIGHT N2 .

1. Temphss is a 1-D array buffer of size J1. N2 is a fixed
value. j2 is the row index and j1 is the column index;

2. for j2 from 0 to J2 − 1,
3. Compute the hss(j1, j2, N2) for 0 ≤ j1 ≤ J1 − 1 at the

j2-th row from integral image using (7) and store them
into Temphss;

4. for j1 from 0 to J1 − 1,
5. Compute rs(j1, j2, N1, N2) using (8) for rectangles

having any N1. The hss(j1, j2, N1, N2) and hss(j1 +
N1, j2, N2) in (8) are stored in Temphss;

6. end
7. end

TABLE III
THE STEPS AND NUMBER OF OPERATIONS REQUIRED BY STRIP SUM

METHOD TO OBTAIN r RECTANGLE SUMS.

1. Prepare the integral image by 2 additions and 4 memory
fetch operations (M-ops) per pixel;

2. prepare the min{nW , nH} strip sums using (7) or (9) by
min{nW , nH} additions and 2min{nW , nH} M-ops per
pixel;

3. obtain the r rectangle sum from strip sum using (8) or (9)
by r additions and 2r M-ops per pixel.

strip sums are required for computing r rectangle sums having
nH different heights. Alternatively, we can compute these
r rectangle sums using nW vertical strip sums. Therefore,
min{nW , nH} strip sums are required for computing these r
rectangle sums. The overall algorithm and the computation re-
quired for computing r rectangle sums is shown in Table III. In
summary, the strip sum method requires 2+min{nW , nH}+r
additions and 4 + 2min{nW , nH}+ 2r memory fetch opera-
tions (M-ops) per pixel for computing r rectangle sums.

The box filtering technique in [54] requires 4r additions
and 6r M-ops per pixel for computing r rectangle sums.
The integral image method in [36] requires 2 + 3r additions
and 4 + 4r M-ops per pixel, where 2 additions and 4 M-
ops are used for preparing the integral image, 3r additions
and 4r M-ops are used for computing r rectangle sums from
integral image using (3). The computational complexity of
these methods is summarized in Table IV. As a solid example,
suppose we want to calculate the 4×4 A2DHT of an N1×N2

image, then min{nW , nH} = 3. There are around 5N1N2

rectangles of 5 different sizes. To calculate these rectangle
sums, the box filtering technique requires 20N1N2 additions,
the integral image method requires 17N1N2 additions, and the
proposed strip-sum technique requires only 10N1N2 additions.
Therefore, the proposed strip-sum technique requires only
around 59% of the additions required by the integral image
technique.

C. Buffering Strip Sum

When r rectangle sums having nH different heights are
computed for a J1 × J2 image, memory of size J1J2nH will

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 5

TABLE IV
THE ADDITIONS (adds) AND MEMORY FETCH OPERATIONS (M-op) PER

PIXEL REQUIRED FOR COMPUTING r RECTANGLE SUMS HAVING nH

DIFFERENT HEIGHTS AND nW DIFFERENT WIDTHS.

Box Integral Image Strip sum
Adds 4r 2 + 3r 2 + min{nW , nH}+ r
M-ops 6r 4 + 4r 4 + 2min{nW , nH}+ 2r

be required if all of the nH horizontal strip sums are stored in
memory. Actually, buffering strategy can be used to reduce the
memory requirement. In the following, we propose a buffering
strategy for computing rectangle sums having one height. And
then we generalize this proposed strategy for computing r
rectangle sums having nH different heights.

We use the computation of rectangle sums of the same
height N2 but different widths as the example to illustrate
the buffering strategy. The procedure of memory usage is
described in Table II. When we use (8) to compute the
rectangle sums rs(j1, 0, N1, N2) of any width N1 at row
j2 = 0 for any j1, we only need the strip sums hss(j1, 0, N2)
and hss(j1 + N1, 0, N2) at row 0, but not the strip sums at
other rows. Thus we can compute the strip sums at row 0 and
store them using a buffer Temphss of size J1, i.e. Step 3 in
Table II. As the row index j2 increases from 0 to 1, the strip
sums at row 0 is no longer required. We can reuse the buffer
Temphss to store the strip sums at row 1, which is then used
for computing rectangle sums at row 1. Therefore, the same
buffer Temphss can be used to store strip sums as the row
index j2 increases from 0 to J2 − 1.

In general, if r rectangle sums of nH different heights are
computed, we need nH buffers and memory of size J1nH . As
nH ≤ J2, the memory required by the strip sum using above
buffering strategy will not exceed J1J2. The integral image
technique utilizes a buffering strategy and stores intermediate
results in the calculation of projection coefficients and hence
accelerates the algorithm. The proposed buffering strategy
is extended directly from the idea of integral image. The
proposed buffering strategy saves the memory required by the
strip sum for computing the rectangle sum.

IV. THE ASYMMETRIC 2D HAAR TRANSFORM

A. The Haar Transform

The level 1 decomposition for the conventional 2D discrete
Haar transform (HT) of 2D input data X(N) can be represented
as follows:

Y
(N)
HT,1 =W

(N)
1 X(N)W

(N)
1

T
=

[
H(N)

G(N)

]
X(N)

[
H(N)

G(N)

]T

=

[
H(N)X(N)H(N)T H(N)X(N)G(N)T

G(N)X(N)H(N)T G(N)X(N)G(N)T

]

=

[
A(N/2) B(N/2)

C(N/2) D(N/2)

]
,

H(N) = IN/2 ⊗ [1 1],G(N) = IN/2 ⊗ [1 − 1],

(10)

where IN/2 denotes the identity matrix of size N/2×N/2, H
is the averaging matrix and G is the detail matrix, ⊗ denotes

the matrix Kronecker product. For example,

W
(4)
1 =

 1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

 =

[
H(4)

G(4)

]
. (11)

The level L decomposition for 2D HT is as follows:

Y
(N)
HT,L =

A(N/2L) B(N/2L)

C(N/2L) D(N/2L)
. . .

.

B(N/2)

C(N/2) D(N/2)

 ,
where A(N/2l) = H(N/2l−1)A(N/2l−1)H(N/2l−1)

T

,

B(N/2l) = H(N/2l−1)A(N/2l−1)G(N/2l−1)
T

,

C(N/2l) = G(N/2l−1)A(N/2l−1)H(N/2l−1)
T

,

D(N/2l) = G(N/2l−1)A(N/2l−1)G(N/2l−1)
T

,

l = 1, . . . , L,A(N) = X(N).

(12)

B. The Proposed Asymmetric 2D Haar Transform
The level 1 decomposition for the proposed A2DHT for 2D

input data X(N) can be represented as follows:

Y
(N)
A2DHT,1 =

[
H(N)X(N)H(N)T

X(N)G(N)T

G(N)X(N)H(N)T

]

=

[
A(N/2)

E(N/2)

C(N/2)

]
.

(13)

Thus, the level L decomposition for A2DHT is:

Y
(N)
A2DHT,L=

A(N/2L)

E(N/2L)

C(N/2L) . . .

. . .
E(N/2)

C(N/2)

 ,
where E(N/2l) = A(N/2l−1)G(N/2l−1)

T

, for l = 1, . . . L.

(14)

A(N/2l) and C(N/2l) for l = 1, . . . L are given in (12). Fig.
5 shows the level 1 decomposition filter bank representation
of HT and A2DHT. The B(N/2l) and D(N/2l) in (12) for HT
are replaced by the E(N/2l) in (14) for A2DHT. Similar to
conventional HT, the A2DHT is applicable to multiresolution
analysis. In Section IV-E, we also provide an explicit construc-
tion of the A2DHT basis. Fig. 6 shows the 512× 512 image
‘Barbara’ decomposed by HT and A2DHT at 7 levels.

Fig. 7 shows the proposed 2D 4 × 4 and 8 × 8 A2DHT.
Normally, the bases in form of 2D images are called basis
images. In this paper, a 2D image is represented by a 1D
vector. For example, a 2D candidate window and a pattern are
represented as 1D vectors x⃗

(j)
w and x⃗t respectively. Hence,

the bases in Fig. 7 are called basis vectors. Also, a 2D
candidate window represented by 1D vector is said to be
projected onto a basis vector instead of onto a basis image.
It is easy to see that the A2DHT basis vectors in Fig. 7 are
orthogonal to each other. We can normalize the basis vectors
to form orthonormal A2DHT basis vectors. Thus A2DHT can
be applied for transform domain pattern matching shown in
Table I.

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 6

g[n1]

h[n1]

x[n]
2

2 g[n2]

h[n2]

2

2

g[n2]

h[n2]

2

2

g[n1]

h[n1]

x[n]
2

2 g[n2]

h[n2]

2

2

g2[n2] 2

2

h[n1]=[1 1]

g[n1]=[1 -1]

h[n2]=[1 1]

g[n2]=[1 -1] g2[n2]=[0 1]

h2[n2]

h2[n2]=[1 0]

Horizontal filter Vertical filter

Conventional HT

A2DHT

Filter

coefficients

Fig. 5. The level 1 decomposition filter bank for 2D A2DHT and conventional
2D HT. h[n2] and g[n2] are used for conventional HT while h2[n2] and
g2[n2] are used for A2DHT.

(a) (b) (c)

Fig. 6. The image ‘Barbara’ (left) decomposed at 7 levels using conventional
Haar transform (middle) and the proposed A2DHT (right). The image ‘Bar-
bara’ is high-pass filtered, yielding the two large images for A2DHT, each
describing local changes in brightness (details) in the original image. It is then
low-pass filtered and downscaled, yielding an approximation image. Then this
procedure is repeated for 6 times on the approximation image.

The GCK algorithm requires 2u additions per pixel for ob-
taining u GCK projection values. If we directly use the integral
image for computing Haar-like features as the implementation
in OpenCV [55], 7 additions per pixel are required to obtain
a Haar-like feature and about 7u additions per pixel are
required to obtain u A2DHT projection values. Hence, direct
use of integral image method makes A2DHT less efficient than
WHT and GCK. In the followings, we propose a fast A2DHT
algorithm that requires O(log u) additions per pixel for the
computation of the u A2DHT projection values.

C. The Fast A2DHT Algorithm

The 4×4 A2DHT in Fig. 7 is used as an example to illustrate
the proposed fast A2DHT algorithm. The 16 4 × 4 A2DHT
basis vectors can be divided into 5 groups which are:

• Group 0: basis vector 0;
• Group 1: basis vector 1;
• Group 2: basis vectors 2 and 3;
• Group 3: basis vectors 4 to 7;
• Group 4: basis vectors 8 to 15;

Each group has its unique feature. Fig. 8 shows the 5 group
features and their corresponding basis vectors. Each of these 5

1 -1 0

(a) (b)

Values for basis vectors

0

1

4

5

2

3

6

7

8

9

12

13

10

11

14

15

Fig. 7. (a): The 2D 4×4 A2DHT basis; (b): the 2D 8×8 A2DHT basis. White
represents value +1, grey represents value −1 and vertical strips represent
value 0. The numbers for 4 × 4 A2DHT basis denote the order when they
are computed in pattern matching. Construction of the basis is illustrated in
IV-E.

0

(a)

2

4

3

1

0 1

2 3 4

4

4

4 2 2

(b)

Group feature

0 1

2 3 4

4

4

2

2 1

Rectangle sum

2

4

2 1 1

(c)

1

-1

0

Fig. 8. The 5 rectangle sums, the 5 group features and their corresponding
basis vectors for the 4× 4 A2DHT.

group features can be computed from a rectangle sum. Since
basis vectors in a group have the same feature, their projection
values can be simultaneously obtained by computing one
feature in a sliding window manner on the basis image.
Therefore, the essence of the proposed algorithm is that a
single group feature contributes to multiple basis vectors. For
example, basis vectors 2 and 3 which have the same group 2
feature can be computed as follows:

1) Compute group 2 feature in a sliding window manner for
all pixel locations and store them in F2.

2) The projection values for basis vectors 2 and 3 are copied
from F2. Denote f2(j1, j2) as the element at horizontal
location j1 and vertical location j2 for F2. As shown in
Fig. 9, f2(0, 2) is considered as the basis vector 3 for
window (0, 0) and the basis vector 2 for window (0, 2).

The steps for computing A2DHT and the number of operations
required are shown in Table V. For 4 × 4 A2DHT as shown
in Fig. 8(c), we compute the g = 5 group features from r = 5
rectangle sums with sizes 4× 4, 4× 2, 2× 2, 2× 1 and 1× 1
as shown in Fig. 8(b). These rectangle sums have nH = 3
different heights: 4, 2 and 1.

For the 8×8 A2DHT as shown in Fig. 7(b), there are 7 group
features. These group features are computed from 7 rectangle
sums with sizes 8× 8, 8× 4, 4× 4, 4× 2, 2× 2, 2× 1 and
1× 1. Hence the heights are 8, 4, 2 and 1, and the number of
heights is 4. As the number of basis vectors increases from 16
for the 4 × 4 A2DHT to 64 for the 8 × 8 A2DHT as shown
in Fig. 7, we can see that when nH increases by 1, g and r

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 7

Window position (0,0) Window position (0,2)

Basis

vector 2

Basis

vector 3

Basis

vector 2

Basis

vector 3

1

-1

0

Same

image image image image

Fig. 9. The basis vector 3 of the window at position (0, 0) and the basis
vector 2 of the window at position (0, 2) sharing the group feature 2 at the
same position for 4× 4 A2DHT. Generally, the basis vector 3 of the window
at position (0, 0) and the basis vector 2 of the window at position (0, N/2)
share the same group feature for N ×N A2DHT, N = 4, 8, 16 . . .

TABLE V
THE STEPS AND NUMBER OF OPERATIONS REQUIRED TO OBTAIN u

A2DHT PROJECTION VALUES FROM g GROUP FEATURES.

1. Compute the rectangle sums with r different sizes nH

different heights. According to Table IV, 2 + nH + r
additions per pixel are required by the strip sum method.

2. The group feature 0 is the pre-computed rectangle sum. No
computation is required.

3. Compute the remaining g−1 group features. g−1 additions
per pixel are required.

4. The u basis vectors are the g group features in different
positions. No computation required.

Overall, 1 + r + nH + g additions per pixel.

will increase by 2.
Generally, when the N1 × N1 input data is projected onto

the first u = 4n, n = 0, 1, ... A2DHT bases, there are g =
1 + log2 u group features. For these group features, there are
r = log2 u+1 rectangle sums having different sizes: N1×N1,
N1×N1

2 , N1

2 ×N1

2 , N1

2 ×N1

4 , · · · , N1√
u
×N1√

u
. And we have nH =

0.5log2u+ 1. As given in Table V, 1 + r+ nH + g additions
per pixel are required for computing these u bases. For the u
basis vectors, since g = 1+ log2 u, r = 1+ log2 u and nH =
1 + 0.5log2u, the proposed method requires 4 + 2.5 log2 u
additions per pixel for obtaining u A2DHT projection values.
Table VI summarizes the corresponding r, nH , g and number
of additions per pixel for 16, 64 and u A2DHT basis vectors.
When u = 16, we have the example for the 4× 4 A2DHT.

As for memory required in computing A2DHT, we can use
the buffering strategy in Section III-C and require J1 memory
for storing strip sum.

D. A2DHT for Pattern Matching

Since A2DHT bases have varying norms, normalization is
required for obtaining SSD. Because the normalization factors
are power of 2, normalization can be computed by shift opera-
tions which has the same cost as additions. This normalization
is computed for the partial SSD of the remaining candidates,
i.e. ||Vx⃗t−Vx⃗

(j)
w ||2 for x⃗(j)

w ∈ Sw, but not for A2DHT on the
entire image, i.e. Vx⃗

(j)
w for j = 0, 1, 2, . . . ,W−1. For u = 4n

A2DHT bases, there are log2 u different normalization factors.
In the worst case, the normalization requires log2 u shifts per
pixel when no candidate is rejected at all. This normalization
procedure requires little computation in practical cases because
many candidates are rejected in early stages.

TABLE VI
NUMBER OF ADDITIONS PER PIXEL REQUIRED BY THE A2DHT

ALGORITHM FOR COMPUTING A2DHT.
Number of basis vectors 16 64 u

Number of rectangle sum r 5 7 1+log2u
Number of heights nH 3 4 1+0.5log2u

Number of group features g 5 7 1+log2 u
Number of additions 14 19 4 + 2.5 log2 u

(a) (b) (c)

Fig. 10. (a) The 4× 4 A2DHT basis B(4); (b) the transposed version B(4)
T ;

(c) one of direct sum variants ⊕3
l=0B

(2)
l .

Projections are computed in pattern matching in two ways:
1) The sliding window way, which computes projection for all
window positions over the whole image.
2) The random access way, which computes projections only
for candidate windows remained.
A2DHT can be computed efficiently in both ways. For exam-
ple, if we want to project 500 candidate windows for checking
the rejection condition ||Vx⃗t − Vx⃗

(j)
w ||2 > T at various

locations of a 256 × 256 image, A2DHT can be computed
in the random access way on the 500 candidate windows with
the aid of integral image. However, the GCK algorithm has
to compute the transformation in the sliding window way on
the entire image such that GCK is computed for about 2562

windows instead of for the remaining 500 candidate windows.
The corners method introduced in [25] for WHT may be used
to compute the WHT for the 500 candidate windows. However,
the corners method requires O(N) additions per pixel for
obtaining one WHT coefficient even if the strip sum algorithm
is used while the A2DHT algorithm require O(1) additions per
pixel for the calculation of one A2DHT coefficient.

As a transform domain matching algorithm, A2DHT share
the good properties of other transform domain algorithms,
such as the ability to handle various distortions after proper
modifications. Besides, A2DHT have all the merits possessed
by wavelet transforms. For instance, basis vectors of the
A2DHT are more locally supported and thus better adapted
to local structures of an image.

E. Extension of the A2DHT to wavelet packets

In complement to the discussion on the A2DHT from the
perspective of multi-resolution analysis in Section IV-B, we
provide in this section an explicit construction of the A2DHT
basis. The A2DHT is in nature a 2D wavelet transform,
therefore it is possible to extend it to wavelet packet bases,
which are regarded as variants of the proposed A2DHT basis,
and on which it has the same computational complexity
to calculate the corresponding projection coefficients. The
A2DHT is asymmetric, meaning that it is not a separable 2D
transform. So the extension differs from the classical extension
proposed in [56] while resembling it. Besides, we propose in
this section a basis selection algorithm, which finds the basis

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 8

that best fit a given set of patterns and reference images among
all the bases included in the wavelet packets. When applied to
natural scene images, the selection algorithm proves that the
proposed A2DHT is a best choice.

For simplicity of notation, let N1 = N2 = M , where M
is some positive integer power of 2. For any linear real space
H(M) = RM×M , we can define the A2DHT basis B(M) ={
ψ
(M)
i,j

}M−1

i,j=0
recursively as follow. Denote by ⊗ the matrix

Kronecker product, then for M = 2,

ψ
(2)
0,0 = 1

2

[
1 1
1 1

]
, ψ

(2)
1,0 = 1√

2

[
1 −1
0 0

]
,

ψ
(2)
0,1 = 1

2

[
1 1
−1 −1

]
, ψ

(2)
1,1 = 1√

2

[
0 0
1 −1

]
.

For M > 2, if i, j ∈
{
n ∈ N

∣∣0 ≤ n < M
2

}
, then

ψ
(M)
i,j =

1

2
ψ

(M/2)
i,j ⊗

[
1 1
1 1

]
;

and if (i, j) ∈
{
(i, j) ∈ N2

∣∣0 ≤ i < M
4 ,

M
4 ≤ j < M

2

}
∪{

(i, j) ∈ N2
∣∣M
4 ≤ i < M

2 , 0 ≤ j < M
2

}
, then

ψ
(M)
2i,2j =

[
1 0
0 0

]
⊗ ψ

(M/2)
i,j ,

ψ
(M)
2i,2j+1 =

[
0 0
1 0

]
⊗ ψ

(M/2)
i,j ,

ψ
(M)
2i+1,2j =

[
0 1
0 0

]
⊗ ψ

(M/2)
i,j ,

ψ
(M)
2i+1,2j+1 =

[
0 0
0 1

]
⊗ ψ

(M/2)
i,j .

Next, we construct the wavelet packet bases of H(M) by
recursively and iteratively using the following two properties.

Property 1. For any M , if B(M) is the A2DHT basis, the
transposes of the 2D basis vectors from B(M) also form an

orthonormal basis B(M)
T =

{
ψ
(M)T

i,j

}M−1

i,j=0
of H(M).

Property 2. For any M , if A(M/2)
l , l = 0, 1, 2, 3, are

orthonormal bases of H(M/2) = RM/2×M/2, then their direct
sum ⊕3

l=0A
(M/2)
l defined as{[

ψ0 0
0 0

]
,

[
0 0
ψ1 0

]
,

[
0 ψ2

0 0

]
,

[
0 0
0 ψ3

]
∈ H(M)

|ψl ∈ A(M/2)
l , l = 0, 1, . . . , 3

}
(15)

is an orthonormal basis of H(M).

Since Property 2 can be recursively used for each of the lin-
ear subspaces H(m) where m = 2j , j = 1, 2, . . . , J = log2M ,
and since Property 1 is valid for arbitrary m = 2j , we have
the following properties.

Property 3. The bases constructed by iteratively and recur-
sively using Property 1 and Property 2 are structured in a
quad-tree.

Property 4. For any basis included in the quad-tree, calcu-
lating the projection value onto any basis vector has the same
computational complexity, which requires the calculation of at
most two rectangle sums.

TABLE VII
NUMBER OF VARIANTS FOR DIFFERENT PATTERN SIZES.

J 2 3 4 5
M 4 8 16 32
NJ 83 4.7× 107 5.1× 1030 6.6× 10122

One can verify that the number of bases included in
the quad-tree is exponentially large, which is stated by the
proposition below.

Proposition 1. Let NJ with J = log2M be the number of
variants of the A2DHT basis included in the quad-tree, then
NJ satisfies

3
M2

4 = 34
J−1

≤ NJ ≤ 3
245
243

·4J−1

= 3
245
243

·M
2

4 . (16)

Detailed proof can be found in Appendix B, which is similar
to the proof provided in [57]. Now, we have constructed an
exponentially large number of variants of the A2DHT basis.
Table IV-E shows NJ for different pattern sizes. When M = 4,
Fig. 10(a) shows the proposed A2DHT basis B(4), and Fig.
10(b) shows its transposed version B(4)

T . Fig. 10(c) shows the
variant ⊕3

l=0B
(2)
l that corresponds to decomposing H(4) into 4

disjoint subspaces H(2)
l (l = 0, 1, 2, 3) of dimensionality 2×2.

With the presence of Property 4, we can conclude that the
optimal basis included in the quad-tree is the one with the best
energy-packing ability, so that it allows the earliest rejection
of the majority of the mismatched candidates. We develop a
modified version of the Best Orthogonal Basis (BOB) selection
algorithm proposed in [56] to find the basis which has the
best energy packing ability and hence yields the lowest overall
complexity.

To simplify the notation, let V(M) =[
v⃗
(M)
0 , v⃗

(M)
1 , . . . , v⃗

(M)
M2−1

]T
, where v⃗

(M)
k is the vectorisation

of ψ
(M)
i,j ∈ B(M) for each k = iM + j, and let

c⃗ = [c0, c1, . . . , cM2−1]
T

= V(M) (x⃗t − x⃗w) ∈ RM2

be the
projection coefficient vector of the difference d⃗ = x⃗t − x⃗w.
Then better energy packing ability of a basis amounts to
lower entropy of the corresponding coefficient sequence
{ck}M

2−1
k=0 defined by

ϵ2 (⃗c) = −
∑
k

c2k
||⃗c||22

log
c2k

||⃗c||22
, (17)

where ||·||2 denots the ℓ2-norm of a vector. The algorithm we
use to find the optimal basis is similar to the BOB algorithm
proposed in [56]. It runs from the leaves to the root of the
quad-tree. Suppose A(m)

l denotes the best basis of subspace
H(m)

l with m = 1, 2, 22, . . . ,M and l = 0, 1, 2, . . . , 4M−m −
1. In each subspace H(m)

l , we examine three bases B(m),
B(m)
T and ⊕3

k=0A
(m/2)
4l+k and then choose the one with the

minimum entropy as the best one of this subspace. After
that, the algorithm goes “upwards” to a “coarser” level, i.e.
changing from m to 2m, and examines bases for the 4M−2m

subspaces H(2m)
l with l = 0, 1, . . . , 4M−2m−1. The algorithm

runs very fast, since it benefits from the additivity of the
entropy measure. Please refer to Appendix C for details.

Equation (17) defines the entropy of a single coefficient
vector. Different from the case in [56], in our case the energy

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 9

packing ability of a basis B is closely related to the specific
probability distributions of the pattern and the candidates.
Hence, we consider the pattern x⃗t and the candidate x⃗w

as random vectors, then the expectation of c2k is c̄2k =

E
{(

v⃗T
k (x⃗t − x⃗w)

)2}
= v⃗T

k E
{
(x⃗t − x⃗w) (x⃗t − x⃗w)

T
}
v⃗k,

where E {·} is the mathematical expectation operator. In
experiments, we estimate E

{
(x⃗t − x⃗w) (x⃗t − x⃗w)

T
}

with

Ĉ =
1

P

P∑
p=1

(x⃗t,p − x⃗w,p) (x⃗t,p − x⃗w,p)
T (18)

by taking samples x⃗t,p and x⃗w,p of the pattern and the
candidate, respectively. Then c2k is estimated by

ĉ2k = v⃗T
k Ĉv⃗k =

∑
i

λi

(
v⃗T
k u⃗i

)2

, (19)

where Ĉ =
∑

i λiu⃗iu⃗
T
i , and λi and u⃗i are the i-th eigen-

value and eigen-vector of Ĉ, respectively. Notice that eigen-
decomposition of Ĉ is utilised so that we can use the fast
algorithm described in Section III when calculating the pro-
jection coefficients v⃗T

k u⃗i.
Now we have provided a selection algorithm that finds the

basis that best fits a given set of patterns and candidates among
the bases contained in the whole wavelet packets. This could
be useful. Because the users of our fast matching algorithm
can adaptively choose the best basis for their own data to be
processed.

To find the optimal basis for pattern matching of natural
scene images, we used samples from the ImageNet dataset
[58] to estimate the expectations of the coefficient squares c2k.
Experiments were conducted for M = 16, 32, and 64. For each
size more than 120 million pairs (x⃗t,p, x⃗w,p) were sampled
from 24605 images which are selected from the ImageNet
dataset. Then the coefficient squares c2k are estimated using
Equation (18) and Equation (19).

For M = 16, Fig. 11 shows some bases included in the
quad-tree and the corresponding entropies. Fig. 11 (a) shows
the first 10 vectors of the proposed 16×16 A2DHT basis B(16),
which corresponds to the minimum entropy 1.6320; Fig. 11
(b) shows the first 10 vectors of the transposition variant B(16)

T ,
which corresponds to a slightly higher entropy 1.6351; Fig. 11
(c) and Fig. 11 (d) show the first 10 vectors of other two bases
that correspond to significantly higher entropies. Notice that
all bases shown in Fig. 11 are in their optimal orders which are
obtained by sorting the corresponding coefficient squares ĉ2k
in descending order. The results of the experiments conducted
for all M = 16, 32 and 64 show that the coefficient sequence
when using the A2DHT basis has the lowest entropy, which
indicates that the A2DHT basis is the optimal one among
all its variants. The A2DHT basis is slightly better than its
transposed version. This is probably because that there are a
little bit more horizontal edges than vertical ones in natural
scene images. We remark here that above result is valid for
pattern matching tasks of natural scene images. For other types
of images, fingerprint images for instance, the optimal basis
may not be the proposed A2DHT basis. However, the basis
selection algorithm described in this section can still be used

Fig. 11. (a) First 10 vectors of the proposed A2DHT basis B(16); (b) first 10
vectors of the transposition variant B(16)

T ;(c) and (d) first 10 vectors of other
two bases included in the quad-tree; (e) Entropies corresponding to several
16× 16 bases that are included in the quad-tree.

to find the most suitable basis included in the quad-tree, and
hence enable fast matching of the pattern.

F. Comparison of A2DHT with Other Transforms

1) A2DHT and GCK: The elements in A2DHT are only 1,
-1 and 0. The elements in GCK [20] are real numbers. A2DHT
is more efficient when computed on isolated windows. It is
because efficient computation of GCK and generalized GCK
requires that they are computed in sliding window manner.
Among the families of the GCK and the generalized GCK,
the most efficient transform domain pattern matching reported
uses WHT. A2DHT and WHT are compared in the next
section.

2) A2DHT and WHT: The following theorem describes the
relationship between WHT and A2DHT:

Theorem 1. If the 2D N1 ×N2 WHT bases are in the same
order as A2DHT bases, then: 1) the subspace spanned by
the first u = 4n, n = 0, 1, ... WHT bases is equal to the
subspace spanned by the first u A2DHT bases; 2) the first u
orthonormal WHT bases and the first u orthonormal A2DHT
bases extract the same energy from any input data; 3) if
WHT is computed by the approach in [21], the computational
complexity for the u WHT bases is 3u/2 + 1 additions per
pixel; if A2DHT is computed by the approach proposed in this
paper, the computational complexity for the u A2DHT bases
is 4 + 2.5 log2 u additions per pixel.

The proof for the theorem above is provided in the appendix.
Here, we use the 4×4 A2DHT and 4×4 WHT shown in Fig.
13 as an example for illustration. Let v⃗

(i)
WHT be the ith 2D

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 10

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

of
 e

ne
rg

y

HT
A2DHT
A2DHT

T

A2DHT
7

Fig. 12. The percentage of extracted energy as a function of the number of
basis (right) from 512 × 512 image ‘Barbara’ (left), where HT denotes the
HT for 9 levels, A2DHT denotes the A2DHT for 9 levels, A2DHTT denotes
the transposed A2DHT for 9 levels and A2DHT7 denotes the A2DHT for 7
levels.

(a) (b)

0

1

4

5

2

3

6

7

8

9

12

13

10

11

14

15

0

1

4

5

2

3

6

7

8

9

12

13

10

11

14

15

8

9

12

13

10

11

14

15

2

3

6

7

0

1

5

4

(c)

Fig. 13. 2D 4 × 4 transforms: (a) the proposed A2DHT, (b) conventional
Haar transform, (c) WHT. White represents +1, grey represents −1 and green
vertical strips represent 0. The numbers for 4 × 4 A2DHT basis denote the
order when they are computed in pattern matching.

WHT basis and v⃗
(i)
A2DHT be the ith 2D A2DHT basis. We

have:
v⃗
(0)T

WHT

v⃗
(1)T

WHT

v⃗
(2)T

WHT

v⃗
(3)T

WHT

 =

 1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1

v⃗
(0)T

A2DHT

v⃗
(1)T

A2DHT

v⃗
(2)T

A2DHT

v⃗
(3)T

A2DHT

 . (20)

The first 4 WHT bases can be linearly represented by the first
4 A2DHT bases and vice versa. Thus the subspace spanned
by the first 4 orthogonal WHT bases is equal to the subspace
spanned by 4 A2DHT bases. The WHT bases are orthogonal to
each other and can be normalized to be orthonormal bases, so
are the A2DHT bases. Thus the energy extracted from input
data by the first 4 orthonormal WHT bases is equal to that
extracted by the first 4 orthonormal A2DHT bases. As for
computational complexity, the fastest WHT algorithm in [21]
requires 3u/2+1 = 25 additions per pixel to compute the u =
16 WHT bases, the proposed fast A2DHT algorithm requires
14 additions per pixel to compute the 16 A2DHT bases.

3) A2DHT and HT: Fig. 13 shows the 4×4 A2DHT and 2D
HT. In appendix A, we prove that the first u = 4n, n = 0, 1, . . .
conventional HT bases and the first u proposed A2DHT bases
span the same subspace. As shown in Fig. 12, HT and A2DHT
have very close energy extraction ability. However, as shown in
Table VIII, A2DHT has lower computational complexity than
the HT. For example, A2DHT bases 2 and 3 can be obtained
at the same time when computed on sliding windows. On the
other hand, the conventional HT bases 2 and 3 are required to
be computed independently.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of pattern matching
using A2DHT by comparing it with FS and the other fast FS-

TABLE VIII
COMPUTATIONAL COMPLEXITY OF A2DHT AND HT FOR u BASIS

VECTORS. THE INTEGRAL IMAGE (II) METHOD IS COMPARED WITH OUR
A2DHT ALGORITHM (OUR ALG.) IN SECTION IV-C.

u = 4n u=16 u=64 u=256

HT II 5+29(u− 1)/3 150 614 2470
Our alg. 5+4.5log2u 23 32 41

A2DHT II 5+7(u− 1) 110 446 1790
Our alg. 5+2.5log2u 15 20 25

TABLE IX
DATASETS AND CORRESPONDING SIZES OF IMAGES AND PATTERNS USED

IN THE EXPERIMENTS.

Dataset Image Size Pattern Size
S1 160× 120 16× 16
S2 320× 240 32× 32
S3 640× 480 64× 64
S4 1280× 960 128× 128
S5 1280× 960 64× 64
S6 1280× 960 32× 32

equivalent algorithms. All of the experiments were conducted
on a 2.13GHz PC using C on windows XP system with
compiling environment VC 6.0. Sum of squared difference
(SSD) is used as the measure of dissimilarity between a pattern
and candidate windows. Since all of the algorithms compared
in this section are FS-equivalent and hence have the same
accuracy, which is equal to the accuracy of a brute-force full
search, we only focus on the speed.

A. Dataset and algorithms used for pattern matching experi-
ments

We compare the following 6 fast algorithms in this section,
1) WHT: the WHT algorithm in [19];
2) GCK: the GCK algorithm for WHT in [20];
3) SEGGCK: the Segmented GCK algorithm in [59]
4) IDA: the recently proposed IDA algorithm in [23];
5) A2DHTI : the A2DHT using the integral image;
6) A2DHT: the A2DHT using the strip sum.
The code of WHT is available online [60] and the code

of IDA is provided by the authors of [23]. The parameters
of WHT use the default values in [60] and those of IDA are
chosen according to [23]. For GCK, we choose the sequency
ordered WHT and the code is based on the code used for
motion estimation in [8]. In the experiments, we examine the
overall computational efficiency of different algorithms instead
of any single step if not specified. Thus all preprocessing, e.g.
calculation of integral image or strip sum, are included for
evaluation.

As pointed out in [19], when the percentage of remaining
candidate windows is below a certain threshold ϵ, it is more
efficient to directly use the FS rather than using any transform
domain algorithm. In the experiments, we set ϵ to 0.02% for
A2DHT, and 2 for WHT and GCK according to the source
code in [60]. We shall discuss the effects of ϵ in more details
in Section V-D.

Table IX shows the sizes of patterns and images in the six
datasets, S1 to S6, used for evaluating the performance of

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 11

S1 S2 S3 S4
0

500

1000

1500
sp

ee
d−

up

S1 S2 S3 S4
10

0

10
1

10
2

10
3

10
4

sp
ee

d−
up

 in
 L

og
 s

ca
le

 IDA
WHT
GCK
SEGGCK
A2DHT

I

A2DHT

Fig. 14. Speed-up in execution time over FS on datasets S1−S4 for different
algorithms measured by normal scale (Left) and log scale (right). The bars
for each dataset from left to right correspond to algorithms IDA, WHT, GCK,
SEGGCK, A2DHTI and A2DHT.

the six fast algorithms. 120 images of 4 different resolutions,
ranging from 160× 120 to 1280× 960, are chosen from three
databases: MIT [61], medical [62], and remote sensing [63].
The MIT database mainly contain indoor, urban, and natural
environments, and some object categories such as cars and
fruits. The two other databases contain radiographs and Land-
sat satellite images. There are 30 images in each resolution,
and 10 patterns for each image. Hence, there are 300 image-
pattern pairs in each of the six datasets. Note that the standard
deviations of pixel intensities of the patterns are all above a
threshold (45, in our experiments) to eliminate flat patterns.
The OpenCV function ‘cvResize’ with linear interpolation is
used to produce the images of desired resolutions. Datasets S1
to S4 are the same as those in [23]. Datasets S5 and S6 are
used to investigate the effect of pattern size on the performance
of different matching algorithms.

In the experiments, a candidate window is regarded as a
correct match if the SSD between the candidate window and
the pattern is below a threshold T . For an N1 × N2 pattern,
the threshold T is set as follow,

T = 1.1 · SSDmin +N1N2, (21)

where SSDmin is the SSD between the pattern and the best
matched window.

B. Experiment 1 – Influence of image and pattern sizes

In this experiment, we compare the speed-ups yielded by
the 6 fast algorithms on datasets S1-S4 which contain images
and patterns of different sizes. The speed-up in execution time
(resp. number of operations) of an algorithm A over another
algorithm B is measured by the execution time (resp. number
of operations) required by B divided by that required by A.
The larger the speed-up is, the faster the algorithm runs. The
speed-ups in execution time yielded by IDA, WHT, GCK,
SEGGCK and A2DHT over FS are shown in Fig. 14. It can
be seen that A2DHT outperforms the other fast algorithms on
all of the 4 datasets. To compute the projection coefficients,
using strip sum only requires around 50% of the execution
time required by methods using integral image. Hence, for fast
matching algorithms adopting the same transform, the A2DHT,
using strip sum saves around 40-50% of the execution time.

N1 N2 N3 N4
0

100

200

300

400

500

600

700

800

S4
N1 N2 N3 N4

0

50

100

150

200

250

300

S5
N1 N2 N3 N4

0

10

20

30

40

50

60

70

80

S6

IDA
WHT
GCK
SEGGCK
A2DHT

I

A2DHT

N1 N2 N3 N4
0

500

1000

1500

2000

2500

S4
N1 N2 N3 N4

0

100

200

300

400

500

600

700

800

S5
N1 N2 N3 N4

0

50

100

150

200

S6

IDA
GCK
A2DHT

I

A2DHT

Fig. 15. Speed-ups in execution time (upper row) and speed-ups in number of
operations (bottom row) yielded by different algorithms over FS for different
noise levels and sizes of image-pattern pairs in pattern matching.

C. Experiment 2 – Influence of pattern size and noise

To evaluate the performance of the algorithms for patterns
of various sizes and images of a fixed size, we conduct
experiments on datasets S4-S6. In S4-S6, the image size
is always 1280 × 960, while the pattern size changes from
128 × 128 to 32 × 32. Moreover, i.i.d. zero-mean Gaussian
noise of 4 different levels are added to each image. The noise
of 4 different levels, denoted by N1, N2, N3 and N4 (from
low to high), has variance 100, 200, 400 and 800, respectively.
They correspond to PSNR 28.1, 25.1, 22.1 and 19.2 when
applied on the 512×512 image “Lena”.

Fig. 15 shows the speed-ups in execution time (and in num-
ber of operations if applicable) yielded by the fast algorithms
over FS. It can be seen that the A2DHT runs the fastest. We
can also see from Fig. 16, the speed-ups in execution time
yielded by A2DHT over IDA and GCK are about 4 - 15 and
8 - 10, respectively, the speed-ups in number of operations
yielded by A2DHT over IDA and GCK are about 5 - 24 and
19 - 24, respectively. The speed-up in number of operations
for WHT is not provided because the bottom up approach of
WHT method in [19] is too complicated to analyse.

D. Experiment 3 – Influence of parameter ϵ

As explained in [19], when the percentage of remaining
candidate windows is smaller than a certain threshold ϵ, it is
more efficient to directly use SSD for finding the matched
windows instead of using transformation. Fig. 17(a) shows
the influence of ϵ for both GCK and A2DHT on dataset S4
with Gaussian noise N4. It can be seen that 2% is better for
GCK while 0.02% is better for A2DHT. Fig. 17(b) shows
that the computation of A2DHT is obviously faster than the
computation of GCK for different situations of ϵ.

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 12

N1 N2 N3 N4
0

2

4

6

8

10

12

14

16

N1 N2 N3 N4
0

5

10

15

20

25

A2DHT/IDA
A2DHT/GCK

Fig. 16. Speed-up of A2DHT over IDA and GCK at 4 noise levels on dataset
S4. The y-axis denotes the ratio between the execution time (left) (and the
number of operations, right) required by the IDA or the GCK and that required
by the A2DHT. The A2DHT runs faster if the ratio is greater than 1.

0.002 0.02 0.2 2 10
0

200

400

600

800

(a)

O
ve

ra
ll

tim
e

in
 s

ec
on

ds

0.002 0.02 0.2 2 10
0

200

400

600

800

(b)

T
ra

ns
fo

rm
 ti

m
e

in
 s

ec
on

ds

GCK
A2DHT

Fig. 17. (a) The overall execution time in seconds as a function of ϵ (left) and
(b) the transformation time in seconds as a function of ϵ (right). Experiments
are done on dataset S4 with noise N4. ϵ denotes the percentage of remaining
window below which FS is used for pattern matching, e.g. 2 and 10 in the X
axis correspond to 2% and 10%, respectively.

E. Experiment 4 – Energy packing ability of A2DHT and WHT

Experiments 1, 2 and 3 evaluate the execution time required
for the whole pattern matching procedure. In this experiment,
we evaluate the energy packing ability of A2DHT and WHT.
As analyzed in [19], the computational efficiency of transform
domain pattern matching is dependent on two factors: 1)
the rejection power of projection values, which is dependent
on the energy packing ability of transformation; 2) the cost
of computing transformation. In summary, transform domain
pattern matching requires that the transformation should be
computationally efficient in packing energy.

We examine the energy packing ability of A2DHT and
WHT on dataset S1. This dataset contains 300 image-pattern
pairs, i.e. 4,567,500 window-pattern pairs of size 16×16. The
SSD between the window and pattern were computed. The
percentage of energy packed by the first u basis vectors is
measured by:

PER(u) = E

[
||Vx⃗t −Vx⃗

(j)
w ||2

||x⃗t − x⃗
(j)
w ||2

]
, (22)

where ||Vx⃗t − Vx⃗
(j)
w ||2 is the partial energy packed by

transformation V and ||x⃗t − x⃗
(j)
w ||2 is the total energy.

Fig. 18(a) shows the PER(u) in (22) as a function of the
number of bases u. It can be seen that A2DHT is close to
WHT in energy packing ability. These results, however, do
not exhibit the runtime required in extracting energy. Fig.
18(b) shows the PER(u) in (22) as a function of the number
of operations per pixel required to obtain the partial energy
||Vx⃗t − Vx⃗

(j)
w ||2. It can be seen that A2DHT can extract

energy from input data using much fewer number of additions
compared with WHT.

0 100 200 300
20

40

60

80

100

%
 o

f e
ne

rg
y

ex
tr

ac
te

d

Number of bases
(a)

0 200 400 600
20

40

60

80

100

%
 o

f e
ne

rg
y

ex
tr

ac
te

d

Number of operations per pixel
(b)

WHT
A2DHT

Fig. 18. Transformation using WHT and A2DHT. WHT is in sequency order
and A2DHT is in the order illustrated in Fig. 7. The energy is given as the
average percentage of the actual energy between pattern and window. All
values are the average over 4,567,500 window-pattern pairs.

N1 N2 N3 N4
0

0.5

1

1.5

2
x 10

−3

F
al

se
−

po
si

tiv
es

 (
%

)

S6
S5
S4

Fig. 19. False-positives (%) for noises N1-N4 in dataset S4-S6 .

F. Discussion on full search scheme

As illustrated in Section II-B, there are two goals for FS in
pattern matching:
Goal 1. find windows having distance d(x⃗t, x⃗

(j)
w) smaller than

a given threshold T ;
Goal 2. find the window having the minimum distance
d(x⃗t, x⃗

(j)
w).

In experiments 1 to 4, this paper follows the approach in
[23] and use goal 1. The choice of T for the previous
experiments follows the experiments in [23], in which IDA
[23] is compared with WHT [19]. As stated in [23], T is
chosen to be very close to the best matching window. As
shown in Fig. 19, the false positives using the threshold in
(21) are not greater than 0.0025% in S4-S6 for the 4 noise
levels.

In practice, T is dependent on specific applications. If the
SSDmin in (21) is not known, T can be set as a fixed value.
Fig. 20 shows the experimental results on dataset S4 with
noise N1. The speed-ups of IDA, GCK and WHT over FS
with different values of T are tested. As shown in Fig. 20, as T
increases, the number of matched windows increases, while the
speed-ups of IDA, GCK and A2DHT decreases. Nevertheless,
A2DHT outperforms the GCK and IDA algorithm when the
number of matched windows varies in a large range (from 10
to 104).

Fig. 21 shows the experimental results when adopting goal
2. A2DHT is faster than GCK and IDA under different levels
of noise and for patterns of different sizes.

VI. CONCLUSIONS

This paper utilises the integral image to compute the strip
sum with one addition per pixel. Then the strip sum method is
used for computing the rectangle sums with one addition per
pixel independent of the size of the rectangle. The rectangle
sums are building blocks of the Haar-like features proposed
in [35], [64], [37]. We then develop a new transform, the
A2DHT, which can be computed efficiently using the fast
strip sum method. Existing fast algorithms for computing

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 13

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Number of matched windows

S
pe

ed
−

up

 IDA
GCK
A2DHT

0 2 4 6

x 10
7

10
1

10
2

10
3

10
4

Treshold T

N
um

be
r

of
 m

at
ch

ed
 w

in
do

w
s

Fig. 20. Speed-up in execution time over FS as a function of the number
of matching windows (left) and the the number of matching as a function of
threshold T .

N1N2N3N4
0

100

200

300

S
pe

ed
−

up

S4
N1N2N3N4

0

20

40

60

80

S5
N1N2N3N4

0

10

20

30

S6

 IDA
GCK
A2DHT

Fig. 21. Speed-up in execution time over FS for finding the best matching
window for noises N1-N4 in datasets S4-S6. SSD is used as the matching
criteria.

transforms on sliding windows [20], [19], [21] require O(u)
additions per pixel for projecting input data onto u 2D basis.
The A2DHT requires only O(log u) for the same task when
using the strip sum. Besides, we extend the A2DHT to wavelet
packets that contain an exponentially large number of bases.
Projections on all of these bases can be calculated as efficiently
as A2DHT. Further more, we propose a selection algorithm
which can find among all the variants the best transform
(equivalently, the optimal basis of the space) for a given
set of patterns and candidates. For natural scene images, the
selection algorithm shows that the proposed A2DHT is the
best. Experimental results show that the proposed algorithm
can significantly accelerate the FS-equivalent pattern matching
process and outperforms state-of-the-art methods. The fast
strip sum method and the A2DHT have potential applications
in feature extraction, block matching in motion estimation,
texture synthesis and analysis, super resolution, image based
rendering, image de-noising, object detection and tracking.

ACKNOWLEDGEMENT

The authors wish to thank Professor Yacov Hel-Or at the
Interdisciplinary Center and Professor Hagit Hel-Or at the
University of Haifa for providing the thesis on generalized
GCK and their code implementing GCK and WHT, Dr.
Federico Tombari and Prof. Luigi Di Stefano at the University
of Bologna for providing their code implementing IDA, image
datasets and helpful discussion, Professor Antonio Torralba
and CSAIL at the MIT for the use of the MIT database, Pro-
fessor Rainer Koster and the Institute for Clinical Radiology
and Nuclear Medicine of the Lukas Hospital Neuss for the use
of the medical image database, and NASA for the use of the
remote sensing image database.

REFERENCES

[1] M. S. Aksoy, O. Torkul, and I. H. Cedimoglu, “An industrial visual
inspection system that uses inductive learning,” J. of Intelligent Manu-
facturing, vol. 15, no. 4, pp. 569–574, 2004.

[2] A. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-based rendering
using image-based priors,” in ICCV, vol. 2, 2003, pp. 1176–1183.

[3] T. Luczak and W. Szpankowski, “A suboptimal lossy data compression
based on approximate pattern matching,” IEEE Trans. Information
Theory, vol. 43, no. 5, pp. 1439–1451, 1997.

[4] R. M. Dufour, E. L. Miller, and N. P. Galatsanos, “Template matching
based object recognition with unknown geometric parameters,” IEEE
Trans. Image Process., vol. 11, no. 12, pp. 1385–1396, Dec. 2002.

[5] W. Freeman, T. Jones, and E. Pasztor, “Example-based super-resolution,”
IEEE Computer Graphics and Applications, vol. 22, no. 2, pp. 56–65,
Mar./Apr 2002.

[6] A. Efros and T. Leung, “Texture synthesis by non-parametric sampling,”
in ICCV, Sept. 1999, pp. 1033–1038.

[7] C. M. Mak, C. K. Fong, and W. K. Cham, “Fast motion estimation for
H.264/AVC in Walsh Hadamard domain,” IEEE Trans. Circuits Syst.
Video Technol., vol. 18, no. 5, pp. 735–745, Jun. 2008.

[8] Y. Moshe and H. Hel-Or, “Video block motion estimation based on
Gray-code kernels,” IEEE Trans. Image Process., vol. 18, no. 10, pp.
2243–2254, Oct. 2009.

[9] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in CVPR, vol. 2, Jun. 2005, pp. 60– 65.

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[11] R. Zhang, W. Ouyang, and W. Cham, “Image deblocking using dual
adaptive fir wiener filter in the DCT transform domain,” in Proc. IEEE
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Taiwan,
April 19-24 2009, pp. 1181–1184.

[12] Y. Alon, A. Ferencz, and A. Shashua, “Off-road path following using
region classification and geometric projection constraints,” in CVPR,
vol. 1, Jun. 2006, pp. 689–696.

[13] Y. Shina, J. S. Jua, and E. Y. Kim, “Welfare interface implementation
using multiple facial features tracking for the disabled people,” Pattern
Recognition Letters, vol. 29, no. 13, pp. 1784–1796, Oct. 2008.

[14] Q. Wang and S. You, “Real-time image matching based on multiple
view kernel projection,” in CVPR, 2007.

[15] X. Wu, “Template-based action recognition: Classifying hockey players’
movement,” Master’s thesis, The University of British Columbia, 2005.

[16] Y. Hel-Or, H. Hel-Or, and E. David, “Fast template matching in non-
linear tone-mapped images,” in Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1355–1362.

[17] J. Lewis, “Fast template matching,” in Vision Interface 95, Quebec City,
Canada, May 15-19 1995, pp. 120–123.

[18] M. G. Alkhansari, “A fast globally optimal algorithm for template
matching using low-resolution pruning,” IEEE Trans. Image Process.,
vol. 10, no. 4, pp. 526–533, Apr 2001.

[19] Y. Hel-Or and H. Hel-Or, “Real time pattern matching using projection
kernels,” IEEE Trans. PAMI, vol. 27, no. 9, pp. 1430–1445, Sept. 2005.

[20] G. Ben-Artz, H. Hel-Or, and Y. Hel-Or, “The Gray-code filter kernels,”
IEEE Trans. PAMI, vol. 29, no. 3, pp. 382–393, Mar. 2007.

[21] W. Ouyang and W. K. Cham, “Fast algorithm for Walsh Hadamard
transform on sliding windows,” IEEE Trans. PAMI, vol. 32, no. 1, pp.
165–171, Jan. 2010.

[22] W. Ouyang, R. Zhang, and W.-K. Cham, “Fast pattern matching using
orthogonal haar transform,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 3050–3057.

[23] F. Tombari, S. Mattoccia, and L. D. Stefano, “Full search-equivalent
pattern matching with incremental dissimilarity approximations,” IEEE
Trans. PAMI, vol. 31, no. 1, pp. 129–141, Jan. 2009.

[24] S. Mattoccia, F. Tombari, and L. D. Stefano, “Fast full-search equivalent
template matching by enhanced bounded correlation,” IEEE Trans.
Image Process., vol. 17, no. 4, pp. 528–538, Apr. 2008.

[25] H. Schweitzer, R. Deng, and R. F. Anderson, “A dual bound algorithm
for very fast and exact template-matching,” IEEE Trans. PAMI, vol. 33,
no. 3, pp. 459–470, Mar. 2011.

[26] W. Pan, S. Wei, and S. Lai, “Efficient NCC-based image matching in
Walsh-Hadamard domain,” in ECCV, D. Forsyth, P. Torr, and A. Zis-
serman, Eds., 2008.

[27] S.-D. Wei and S.-H. Lai, “Fast template matching based on normalized
cross correlation with adaptive multilevel winner update,” IEEE Trans.
Image Process., vol. 17, no. 11, pp. 2227–2235, Nov. 2008.

[28] Y. Li, H. Li, and Z. Cai, “Fast orthogonal haar transform patternmatching
via image square sum,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 36, no. 9, pp. 1748–1760, 2014.

[29] A. Goshtasby, 2-D and 3-D Image Registration for Medical, Remote
Sensing and Industrial Applications. New York: Wiley, 2005.

1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2629621, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ??, NO. ??, ?? ?? 14

[30] B. Zitova and J. Flusser, “Image registration methods:a survey,” Image
Vis. Comput., vol. 21, no. 11, pp. 977–1000, 2003.

[31] W. Krattenthaler, K. Mayer, and M. Zeiler, “Point correlation: A
reduced-cost template matching technique,” in Proc. 1st IEEE Int. Conf.
Image Processing, vol. 1, Austin, TX, 1994, pp. 208–212.

[32] K. Briechle and U. D. Hanebeck, “Template matching using fast
normalized cross correlation,” in Proc. SPIE AeroSense Symp.,
vol. 4387. SPIE, 2001, pp. 95–102. [Online]. Available: http:
//link.aip.org/link/?PSI/4387/95/1

[33] H. Schweitzer, J. W. Bell, and F. Wu, “Very fast template matching,” in
ECCV, 2002, pp. 358–372.

[34] P. Simard, L. Bottou, P. Haffner, and Y. LeCun, “Boxlets: A fast
convolution algorithm for signal processing and neural networks,” Adv.
Neural Inf. Process. Syst., vol. 11, pp. 571–577, 1999.

[35] F. Tang, R. Crabb, and H. Tao, “Representing images using nonorthogo-
nal Haar-like bases,” IEEE Trans. PAMI, vol. 29, no. 12, pp. 2120–2134,
Dec. 2007.

[36] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in CVPR, 2001, pp. I:511–I:518.

[37] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical analysis of
detection cascades of boosted classifiers for rapid object detection,” in
DAGM 25th Pattern Recognition Symposium, 2003, pp. 297–304.

[38] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns
of motion and appearance,” in ICCV, 2003, pp. II:734–II:741.

[39] O. Tuzel, F. Porikli, and P. Meer, “Pedestrian detection via classification
on riemannian manifolds,” IEEE Trans. PAMI, vol. 30, no. 10, pp. 1713–
1727, Oct. 2008.

[40] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection
using a cascade of histograms of oriented gradients,” in CVPR, 2006.

[41] M. Pham, Y. Gao, V. Hoang, and T. Cham, “Fast polygonal integration
and its application in extending haar-like features to improve object
detection,” in CVPR, 2010, pp. 942–949.

[42] C. Lampert, M. Blaschko, and T. Hofmann, “Beyond sliding windows:
object localization by efficient subwindow search,” in CVPR, 2008.

[43] H. Bay, T. Tuytelaars, and L. Gool, “Surf: Speeded up robust features,”
in ECCV, vol. 1, 2006, pp. 404–417.

[44] F. Crow, “Summed-area tables for texture mapping,” in Proc.11th Ann.
Conf. Computer Graphics and Interactive Techniques, 1984, pp. 207–
212.

[45] F. Porikli, “Integral histogram: a fast way to extract histograms in
cartesian spaces,” in CVPR, 2005.

[46] A. Mahmood and S. Khan, “Exploiting transitivity of correlation for
fast template matching,” IEEE Trans. Image Process., vol. 19, no. 8, pp.
2190–2200, 2010.

[47] ——, “Correlation-coefficient-based fast template matching through
partial elimination,” vol. 21, no. 4, pp. 2099–2108, 2012.

[48] B. Girod, Whats Wrong with Mean-Squared Error? MIT Press, 1993,
ch. 15.

[49] S. Santini and R. Jain, “Similarity measures,” IEEE Trans. PAMI, vol. 21,
no. 9, pp. 871–883, Sept. 1999.

[50] A. Ahumada, “Computational image quality metrics: A review,” in Proc.
Soc. Information Display Intl Symp., vol. 24, 1998, pp. 305–308.

[51] M. Ben-Yehuda, L. Cadany, and H. Hel-Or, “Irregular pattern matching
using projections,” in Proc. 12th Int’l Conf. Image Processing (ICIP),
vol. 2, 2005, pp. 834–837.

[52] Y. Hel-Or, T. Malzbender, and D. Gelb, “Synthesis and rendering of
3d textures,” in Texture 2003 Workshop accomp. ICCV 2003,, 2003, pp.
53–58.

[53] Q. Wang, J. Mooser, S. You, and U. Neumann, “Augmented exhibitions
using natural features,” Int’l. J. Virtual Reality, vol. 7, no. 4, pp. 1–8,
2008.

[54] M. J. McDonnell, “Box-filtering techniques,” Comput. Graph. Image
Process., vol. 17, pp. 65–70, 1981.

[55] “Opencv library,” accessed in 2012. [Online]. Available: http:
//sourceforge.net/projects/opencvlibrary

[56] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for
best basis selection,” Information Theory, IEEE Transactions on, vol. 38,
no. 2, pp. 713–718, 1992.

[57] S. Mallat, A wavelet tour of signal processing: the sparse way. Aca-
demic press, 2008.

[58] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), pp. 1–42, April 2015.

[59] W. Ouyang, R. Zhang, and W.-K. Cham, “Segmented gray-code kernels
for fast pattern matching,” IEEE Transactions on Image Processing,
vol. 22, no. 4, pp. 1512–1525, 2013.

[60] Y. Hel-Or, “Webpage of real-time pattern matching using projection
kernels,” accessed in 2012. [Online]. Available: www.faculty.idc.ac.il/
toky/Software/software.htm

[61] A. Torralba, “Mit-csail database of objects and scenes,” accessed in
2012. [Online]. Available: http://people.csail.mit.edu/torralba/images

[62] J. Abel, “Data compression resource,” accessed in 2012. [Online].
Available: www.data-compression.info/Corpora/LukasCorpus

[63] NASA, “Nasa mrsid image database,” accessed in 2012. [Online].
Available: http://zulu.ssc.nasa.gov/mrsid

[64] P. Viola and M. Jones, “Robust real-time face detection,” IJCV, vol. 57,
no. 2, pp. 137–154, 2004.

Wanli Ouyang Wanli Ouyang received the BS de-
gree in computer science from Xiangtan University,
Hunan, China, in 2003. He received the MS degree
in computer science from the College of Computer
Science and Technology, Beijing University of Tech-
nology, Beijing, China. He received the Ph.D. degree
in 2011 and is now a research assistant professor
in the Department of Electronic Engineering, The
Chinese University of Hong Kong. His research
interests include image processing, computer vision,
and pattern recognition. He is a member of the IEEE.

Tianle Zhao Tianle Zhao received his Bachelor’s
degree from Shanghai Jiao Tong University, Shang-
hai, China, in 2013 in Information Engineering. He
is now a Ph.D. candidate in the Department of
Electronic Engineering, The Chinese University of
Hong Kong. His research interests include image
processing and pattern recognition.

Wai-kuen Cham Wai-kuen Cham graduated from
The Chinese University of Hong Kong in 1979 in
Electronics. He received his M.Sc. and Ph.D. degrees
from Loughborough University of Technology, U.K.,
in 1980 and 1983 respectively. From June 1984 to
April 1985, he was a senior engineer in Datacraft
Hong Kong Limited and a lecturer in the Department
of Electronic Engineering, Hong Kong Polytechnic
(now The Polytechnic University of Hong Kong).
Since May 1985, he has been with the Department
of Electronic Engineering, the Chinese University of

Hong Kong.

Liying Wei Liying Wei received the B.E. de-
gree from Xidian University, China, in 2002, the
M.E. degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2006, and
the Ph.D. degree from The Australian National Uni-
versity, Australia, in 2011. She worked as a post-
doc researcher in the Australian National University
from September 2010 to March 2011, the Chinese
University of Hong Kong from June 2011 to May
2013, the Telecom-ParisTech from June 2014 to
May 2015 and Institut de Recherche et Coordination

Acoustique/Musique (IRCAM) from June 2015 to November 2015. She is a
postdoc researcher in IBM Netherlands. Her current research interests are in
the field of digital signal processing, acoustic signal processing and image
processing.

