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Abstract—In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep

learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation

constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training

strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability.

By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of

models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach

improves the mean averaged precision obtained by RCNN [1], which was the state-of-the-art, from 31 to 50:3 percent on the

ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1 percent. Detailed component-wise

analysis is also provided through extensive experimental evaluation, which provides a global view for people to understand the deep

learning object detection pipeline.

Index Terms—CNN, convolutional neural networks, object detection, deep learning, deep model
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1 INTRODUCTION

OBJECT detection is one of the fundamental challenges in
computer vision and has attracted a great deal of

research interest [2], [3]. Intra-class variation in appearance
and deformation are among the main challenges of this task.

Because of its power in learning features, the convolu-
tional neural network (CNN) is being widely used in recent
large-scale detection and recognition systems [4], [5], [6],
[7], [8], [9]. Since training deep models is a non-convex opti-
mization problem with millions of parameters, the choice of
a good initial point is a crucial but unsolved problem, espe-
cially when deep CNN goes deeper [4], [5], [7]. It is also
easy to overfit to a small training set. Researchers find that
supervised pretraining on large-scale image classification
data and then finetuning for the target object detection task
is a practical solution [1], [10], [11], [12]. However, we
observe that there is still a gap between the pretraining task
and the finetuning task that makes pretraining less effective.
The problem of the training scheme is the mismatch
between pretraining for the image classification task and
fine-tuning for the object detection task. For image classifi-
cation, the input is a whole image and the task is to recog-
nize the object within this image. Therefore, learned feature
representations have robustness to scale and location

change of objects in images. Taking Fig. 1a as an example,
no matter how large and where a person is in the image, the
image should be classified as person. However, robustness
to object size and location is not required for object detec-
tion. For object detection, candidate regions are cropped
and warped before they are used as input of the deep
model. Therefore, the positive candidate regions for the
object class person should have their locations aligned and
their sizes normalized. On the contrary, the deep model is
expected to be sensitive to the change in position and size in
order to accurately localize objects. An example to illustrate
the mismatch is shown in Fig. 1a. Because of such mismatch,
the image classification task is not an ideal choice to pretrain
the deep model for object detection. Therefore, a new pre-
training scheme is proposed to train the deep model for
object detection more effectively.

Part deformation handling is a key factor for the recent
progress in object detection [13], [14], [15], [16], [17]. Our
new CNN layer is motivated by three observations. First,
deformable visual patterns are shared by objects of different
categories. For example, the circular visual pattern is shared
by both banjo and ipod as shown in Fig. 1b. Second, the reg-
ularity on deformation exists for visual patterns at different
semantic levels. For example, human upper bodies, human
heads, and human mouths are parts at different semantic
levels with different deformation properties. Third, a
deformable part at a higher level is composed of deformable
parts at a lower level. For example, a human upper body is
composed of a head and other body parts. With these obser-
vations, we design a new deformation-constrained pooling
(def-pooling) layer to learn the shared visual patterns and
their deformation properties for multiple object classes at
different semantic levels and composition levels.
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The performance of deep learning systems depends sig-
nificantly on implementation details [18]. However, an eval-
uation of the performance of the recent deep architectures
on the common ground for large-scale object detection is
missing. As a respect to the investigation on details in deep
learning [1], [18], this paper compares the performance of
recent deep models, including AlexNet [19], ZF [20],
Overfeat [21], and GoogLeNet [4] under the same setting for
different pretraining-finetuning schemes. We also provide
experimental analysis on the properties that cause the accu-
racy variation in different object classes.

In this paper, we propose a deformable deep convolutional
neural network for object detection; named as DeepID-Net. In
DeepID-Net, we jointly learn the feature representation and
part deformation for a large number of object categories. We
also investigate many aspects in effectively and efficiently
training and aggregating the deep models, including bound-
ing box rejection, training schemes, context modeling, and
model averaging. The proposed new framework significantly
advances the state-of-the-art for deep learning based generic
object detection, such as the well known RCNN [1] frame-
work. This paper also provides detailed component-wise

experimental results on how our approach can improve the
mean Averaged Precision (AP) obtained by RCNN [1] from
31.0 percent to mean AP 50.3 percent step-by-step on the
ImageNet Large Scale Visual Recognition Challenge 2014
(ILSVRC2014) object detection task.

The contributions of this paper are as follows:

1) A newdeep learning framework for object detection. It
effectively integrates feature representation learning,
part deformation learning, context modeling, model
averaging, and bounding box location refinement into
the detection system. Detailed component-wise analy-
sis is provided through extensive experimental evalu-
ation. This paper is also the first to investigate the
influence of CNN structures for the large-scale object
detection task under the same setting. By changing the
configuration of this framework, multiple detectors
with large diversity are generated, which leads to
more effectivemodel averaging.

2) A new scheme for pretraining the deep CNN model.
We propose to pretrain the deep model on the
ImageNet image classification and localization data-
set with 1,000-class object-level annotations instead
of with image-level annotations, which are com-
monly used in existing deep learning object detec-
tion [1], [4]. Then the deep model is fine-tuned on
the ImageNet/PASCAL-VOC object detection data-
set with 200/20 classes, which are the target object
classes in the two datasets.

3) A new deformation constrained pooling (def-
pooling) layer, which enriches the deep model by
learning the deformation of object parts at any infor-
mation abstraction levels. The def-pooling layer can
be used for replacing the max-pooling layer and
learning the deformation properties of parts.

4) Analysis on the object properties that influence the
variation in object detection accuracy for different
classes.

Preliminary version of this paper is published in [22].
This paper include more analysis on the proposed approach
and add experimental investigation on the properties that
influence the accuracy in detecting objects.

The models pretrained by both image-level annotation
and object-level annotation for AlexNet [19], ZF [20], over-
feat [21] and GoogLeNet [4] and the models after fine-tuning
on ILSVRC2014 are provided online.1

2 RELATED WORK

Since many objects have non-rigid deformation, the ability
to handle deformation improves detection performance.
Deformable part-based models (DPM) were used in [13],
[14], [23], [24], [25] for handling translational movement of
parts. To handle more complex articulations, size change
and rotation of parts were modeled in [15], and mixture of
part appearance and articulation types were modeled in
[26], [27]. A dictionary of shared deformable patterns was
learned in [28]. In these approaches, features were manually
designed.

Fig. 1. The motivation of this paper in new pretraining scheme (a) and
jointly learning feature representation and deformable object parts
shared by multiple object classes at different semantic levels (b). In (a),
a model pretrained on image-level annotation is more robust to size and
location change while a model pretrained on object-level annotation is
better in representing objects with tight bounding boxes. In (b), when
ipod rotates, its circular pattern moves horizontally at the bottom of the
bounding box. Therefore, the circular patterns have smaller penalty
moving horizontally but higher penalty moving vertically. The curvature
part of the circular pattern are often at the bottom right positions of the
circular pattern. Magnitudes of deformation penalty are normalized to
make them comparable across the two examples in (a) for visualization.
Best viewed in color.

1. www.ee.cuhk.edu.hk/�wlouyang/projects/ImageNet
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deep models have been widely used for object recognition,
detection and other vision tasks [1], [6], [7], [19], [20], [21],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51],
[52], [53], [54], [55]. Krizhevsky et al. proposed a neural net-
work with 60 million parameters and 650,000 neurons [19].
This neural network was the first to show the power of
deep CNN in large-scale computer vision task. Later on,
Razavian et al. [11] showed that the OverFeat network [21]
trained for object classification on ILSVRC13 was a good
feature representation for the diverse range of recognition
tasks of object image classification, scene recognition, fine
grained recognition, attribute detection and image retrieval
applied to a diverse set of datasets. As a further step of
using the model trained for ImageNet object classification,
Girshick et al. found finetuning the CNN pretrained on the
ImageNet object classification to be effective on various
object detection benchmark datasets [1]. In existing deep
CNNmodels, max pooling and average pooling were useful
in handling deformation but could not learn the deforma-
tion penalty and geometric models of object parts. The
deformation layer was first proposed in [56] for pedestrian
detection. In this paper, we extend it to general object detec-
tion on ImageNet. In [56], the deformation layer was con-
strained to be placed after the last convolutional layer. In
this work the def-pooling layer can be placed after all the
convolutional layers to capture geometric deformation at all
the information abstraction levels. In [56], it was assumed
that a pedestrian only had one instance of a body part, so
each part filter only had one optimal response in a detection
window. In this work, it is assumed that an object has multi-
ple instances of a part (e.g., a car has many wheels), so each
part filter is allowed to have multiple response peaks in a
detection window. Moreover, we allow multiple object cate-
gories to share deformable parts and jointly learn them with
a single network. This new model is more suitable for gen-
eral object detection.

The use of context has gained attention in recent works on
object detection. The context information investigated in lit-
erature includes regions surrounding objects [57], [58], [59],
object-scene interaction [60], [61], and the presence, location,
orientation and size relationship among objects [33], [58],
[59], [60], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71],
[72]. In this paper, we use whole-image classification scores
over a large number of classes from a deep model as global
contextual information to refine detection scores.

Besides feature learning, deformation modeling, and
context modeling, there were also other important

components in the object detection pipeline, such as pre-
training [1], network structures [19], [20], [21], refinement
of bounding box locations [1], and model averaging [6],
[19], [20]. While these components were studies individu-
ally in different works, we integrate them into a complete
pipeline and take a global view of them with component-
wise analysis under the same experimental setting. It is an
important step to understand and advance deep learning
based object detection.

3 METHOD

3.1 Overview of Our Approach

An overview of our proposed approach is shown in Fig. 2.
We take the ImageNet object detection task as an example.
The ImageNet image classification and localization dataset
with 1,000 classes is chosen to pretrain the deep model. Its
object detection dataset has 200 object classes. In the experi-
mental section, the approach is also applied to the PASCAL
VOC. The pretraining data keeps the same, while the detec-
tion dataset only has 20 object classes. The steps of our
approach are summarized as follows

1) Selective search proposed in [73] and edgeboxes pro-
posed in [74] are used to propose candidate bound-
ing boxes.

2) An existing detector, RCNN [1] in our experiment, is
used to reject bounding boxes that are most likely to
be background.

3) An image region in a bounding box is cropped and
fed into the DeepID-Net to obtain 200 detection
scores. Each detection score measures the confidence
on the cropped image containing one specific object
class. Details are given in Section 3.2.

4) The 1,000-class whole-image classification scores of a
deep model are used as contextual information to
refine the detection scores of each candidate bound-
ing box. Details are given in Section 3.6.

5) Average of multiple deep model outputs is used to
improve the detection accuracy. Details are given in
Section 3.7.

6) Bounding box regression proposed in RCNN [1] is
used to reduce localization errors.

3.2 Architecture of DeepID-Net

DeepID-Net in Fig. 3 has three parts

(a) The baseline deep model. The ZF model proposed in
[20] is used as the default baseline deep model when
it is not specified.

(b) Branches with def-pooling layers. The input of these
layers is the conv5, the last convolutional layer of the
baseline model. The output of conv5 is convolved
with part filters of variable sizes and the proposed
def-pooling layers in Section 3.4 are used to learn the
deformation constraint of these part filters. Parts
(a)-(b) output 200-class object detection scores. For the
cropped image region that contains a horse as shown
in Fig. 3a, its ideal output should have a high score for
the object class horse but low scores for other classes.

(c) The deep model (ZF) to obtain image classification
scores of 1,000 classes. Its input is the whole image,

Fig. 2. Overview of our approach. Detailed description is given in Section
3.1. Texts in red highlight the steps that are not present in RCNN [1].

OUYANG ET AL.: DEEPID-NET: OBJECT DETECTION WITH DEFORMABLE PART BASED CONVOLUTIONAL NEURAL NETWORKS 3
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as shown in Fig. 3c. The image classification scores
are used as contextual information to refine the clas-
sification scores of bounding boxes. Detail are given
in Section 3.6.

3.3 New Pretraining Strategy

The widely used training scheme in deep learning based
object detection [1], [4], [12] including RCNN is denoted by
Scheme 0 and described as follows

1) Pretrain deep models by using the image classifica-
tion task, i.e., using image-level annotations from the
ImageNet image classification and localization train-
ing data.

2) Fine-tune deep models for the object detection task,
i.e., using object-level annotations from the object
detection training data. The parameters learned in
Step (1) are used as initialization.

The deep model structures at the pretraining and fine-
tuning stages are only different in the last fully connected
layer for predicting labels (1; 000 classes for the ImageNet
classification task versus 200 classes for the ImageNet detec-
tion task). Except for the last fully connected layers for clas-
sification, the parameters learned at the pretraining stage
are directly used as initial values for the fine-tuning stage.

We propose to pretrain the deep model on a large auxil-
iary object detection training data instead of the image clas-
sification data. Since the ImageNet Cls-Loc data provides
object-level bounding boxes for 1,000 classes, more diverse
in content than the ImageNet Det data with 200 classes, we
use the image regions cropped by these bounding boxes to
pretrain the baseline deep model in Fig. 3a. The proposed
pretraining strategy is denoted as Scheme 1 and bridges the
image- versus object-level annotation gap in RCNN

1) Pretrain the deepmodel with object-level annotations
of 1; 000 classes from ImageNet Cls-Loc train data.

2) Fine-tune the deep model for the 200-class object
detection task, i.e., using object-level annotations of
200 classes from ImageNet Det train and val1 (valida-
tion set 1) data. Use the parameters in Step (1) as
initialization.

Compared with the training scheme of RCNN, experi-
mental results show that the proposed scheme improves
mean AP by 4.5 percent on ImageNet Det val2 (validation
set 2). If only the 200 target classes (instead of 1,000 classes)
from the ImageNet Cls-Loc train data are selected for
pretraining in Step (1), the mean AP on ImageNet Det val2
drops by 5.7 percent.

Another potential mismatch between pretraining and
fine-tuning comes from the fact that the ImageNet classifica-
tion and localization (Cls-Loc) data has 1; 000 classes, while
the ImageNet detection (Det) data only targets on 200 clas-
ses, most of which are within the 1; 000 classes. In many
practical applications, the number of object classes to be
detected is small. People question the usefulness of auxil-
iary training data outside the target object classes. Our
experimental study shows that feature representations pre-
trained with 1; 000 classes have better generalization capa-
bility, which leads to better detection accuracy than
pretraining with a subset of the Cls-Loc data only belonging
to the 200 target classes in detection.

3.4 Def-Pooling Layer

3.4.1 DPM and Its Relationship with CNN

In the deformable part based model [13] for object detection,
the following steps are used at the testing stage

1) Extract HOG feature maps from the input image.
2) Obtain the part detection score maps by filtering the

HOG feature maps with the learned part filters/
detectors. The part filters are learned by latent SVM.

3) Obtain deformable part score maps by subtracting
deformation penalty from part detection score maps.

4) Sum up the deformable part scoremaps frommultiple
parts to obtain the final object detection scoremap.

Denote the convolutional layer at the lth layer by convl.

Denote the output maps of convl by Ml. The steps above for
DPM have the following relationship for CNN

1) The HOG feature map in DPM corresponds to the
output of a convolutional layer. Consecutive convo-
lutional layers and pooling layers can be considered
as extracting feature maps from input image.

2) The part detection maps in DPM correspond to the
output response maps of the convolutional layer. For
example, the output of convl�1 is the feature maps

Ml�1, which are treated as input feature maps of
convl. Filtering on HOG feature maps using part fil-
ters in DPM is similar to filtering on the feature

maps Ml�1 using the filters of convl in CNN. Each
output channel of convl corresponds to a part detec-
tion map in DPM. The filter of convl for an output
channel corresponds to a part filter in DPM. The
response map in CNN is called part detection map
in the following of this paper.

3) The deformation penalty in DPM for each part corre-
sponds to the deformation penalty in our proposed

Fig. 3. Architecture of DeepID-Net with three parts: (a) baseline deep
model, which is ZF [20] in our single-model detector; (b) layers of part filters
with variable sizes and def-pooling layers; (c) deep model to obtain 1,000-
class image classification scores. The 1,000-class image classification
scores are used to refine the 200-class bounding box classification scores.

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. X, XXXXX 2016



IEE
E P

ro
of

def-pooling layer for CNN. Details are given in
Section 3.4.2.

4) Summing up the deformable part score maps for
multiple parts in DPM is similar to summing up
multiple def-pooling layer output maps with a spe-
cial case of convolutional layer. Def-pooling layer
output maps can be summed up by using a convolu-
tional layer after the def-pooling layer with filter size
1� 1 and filter coefficients being constant 1 for the
convolutional layer.

In summary, HOG feature extraction, part detector filter-
ing, deformation penalty subtraction and part detection
scores aggregation in DPM [13] have their corresponding
operations in the CNN as shown in Fig. 4.

3.4.2 Definition of the Def-Pooling Layer

Similar to max-pooling and average-pooling, the input of a
def-pooling layer is the output of a convolutional layer. The
convolutional layer produces C maps of size W �H.
Denote Mc as the cth map. Denote the ði; jÞth element of Mc

by mði;jÞ
c , i ¼ 1; . . . ;W; j ¼ 1; . . . ; H. The def-pooling layer

takes a small block with center ðx; yÞ and size ð2Rþ 1Þ�
ð2Rþ 1Þ from theMc and produce the element of the output
as follows:

~bðx;yÞc ¼ max
dx;dy2f�R;...;Rg

~mcðzdx;dy ; dx; dyÞ; (1)

where x ¼ 1; . . . ;W; y ¼ 1; . . . ; H; (2)

~mcðzdx;dy ; dx; dyÞ ¼ m
zdx;dy
c � fðdx; dyÞ (3)

zdx;dy ¼ ½x; y�T þ ½dx; dy�T; (4)

fðdx; dyÞ ¼
XN
n¼1

ac;nd
dx;dy
c;n : (5)

� ðx; yÞ denotes the assumed anchor location of object
part.

� ðdx; dyÞ denotes the translation/displacement of
object part from the anchor position.

� zdx;dy as defined in (4) is the deformed location from
the assumed anchor position.

� m
zdx;dy
c in (3) is the element in Mc at the location zdx;dy .

It is considered as the score of matching the cth part
filter with the features at the deformed location zdx;dy .

� fðdx; dyÞ in (3) and (5) is the deformation penalty of
placing the part from the assumed anchor position

ðx; yÞ to the deformed location zdx;dy . ac;n and d
dx;dy
c;n in

(5) are parameters of deformation that can be
pre-defined or learned by back-propagation (BP). N

denotes the number of parameters ac;n and d
dx;dy
c;n .

� ~mcðzdx;dy ; dx; dyÞ in (1) and (3) is the deformable part
score. It is obtained by subtracting the deformation
penalty fðdx; dyÞ from the visual matching score

m
zdx;dy
c .

� ~bðx;yÞc is the ðx; yÞth element of the output of the def-

pooling layer. For the anchor location ðx; yÞ, ~bðx;yÞc is
obtained by taking the maximum deformable part
score ~mcðzdx;dy ; dx; dyÞ within the displacement range

R, i.e., dx; dy 2 f�R; . . . ; Rg.
The def-pooling layer can be better understood through

the following examples.

Example 1. If N ¼ 1, an ¼ 1, d
dx;dy
1 = 0 for jdxj; jdyj � k and

d
dx;dy
1 ¼ 1 for jdxj; jdyj > k, then this corresponds to max-

pooling with kernel size k. It shows that the max-pooling
layer is a special case of the def-pooling layer. Penalty
becomes very large when deformation reaches certain
range. Since the use of different kernel sizes in max-
pooling corresponds to different maps of deformation
penalty that can be learned by BP, def-pooling provides
the ability to learn the map that implicitly decides the ker-
nel size for max-pooling.

Example 2. If N ¼ 1 and an ¼ 1, then d
dx;dy
1 is the deforma-

tion parameter/penalty of moving a part from the anchor
location ðx; yÞ by ðdx; dyÞ. If the part is not allowed to

move, we have d0;01 ¼ 0 and d
dx;dy
1 ¼ 1 for ðdx; dyÞ 6¼ ð0; 0Þ.

If the part has penalty 1 when it is not at the assumed

location ðx; yÞ, then we have d0;01 ¼ 0 and d
dx;dy
1 ¼ 1 for

ðdx; dyÞ 6¼ ð0; 0Þ. It allows to assign different penalty to dis-
placement in different directions. If the part has penalty 2
moving leftward and penalty 1 moving rightward, then

we have d
dx;dy
1 ¼ 1 for dx < 0 and d

dx;dy
1 ¼ 2 for dx > 0.

Fig. 6 shows some learned deformation parameters d
dx;dy
1 .

Fig. 7 shows some visualized parts.

Example 3. The deformation layer in [56] is a special case of
the def-pooling layer by enforcing that zdx;dy in (1) covers
all the locations in convl�1;i and only one output with a
pre-defined location is allowed for the def-pooling layer
(i.e., R ¼ 1, sx ¼ W , and sy ¼ H). The proof can be found
in Appendix A. To implement quadratic deformation

penalty used in [13], we can predefine fddx;dyc;n gn¼1;2;3;4 ¼
fdx; dy; ðdxÞ2; ðdyÞ2g and learn parameters an. As shown in
Appendix A, the def-pooling layer under this setting can

Fig. 4. The relationship between the operations in the DPM and the CNN.

Fig. 5. Def-pooling layer. The part detection map and the deformation
penalty are summed up. Block-wise max pooling is then performed on
the summed map to obtain the output B of size H

sy
� W

sx
(3� 1 in this

example).

OUYANG ET AL.: DEEPID-NET: OBJECT DETECTION WITH DEFORMABLE PART BASED CONVOLUTIONAL NEURAL NETWORKS 5
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based model [13] and the DP-DPM [75].

Take Example 2 as an example for BP learning. ac;n is the
parameter in this layer and d� is pre-defined constant. Then
we have

@bðx;yÞc

@ac;n
¼ �dðDx;DyÞ

c;n ;

ðDx;DyÞ ¼ argmaxdx;dy2f�R;...;Rgfm
zdx;dy
c � fðdx; dyÞg;

(6)

where ðDx;DyÞ is the position with the maximum value in
(1). The gradients for the parameters in the layers before the
def-pooling layer are back-propagated like max-pooling
layer.

Similar to max-pooling and average pooling, subsam-
pling can be done as follows:

bðx;yÞc ¼ ~bðsx	x;sy	yÞ:c (7)

For Mc of size W �H, the subsampled output has size
W
sx
� H

sy
. Therefore, multiple instances of an object part at

multiple anchor locations are allowed for each part filer.
In our implementation, N ¼ 1, R ¼ 2 and Example 2 is

used for def-pooling, there are no fully connected layers
after conv71; 2; 3 in Fig. 3. We did not find improvement on
ImageNet by further increasing N and R. Further study on
N and R could be done on other datasets and particular cat-
egories in the future work.

3.4.3 Analysis

A visual pattern has different spatial distributions in differ-
ent object classes. For example, traffic lights and ipods have
geometric constraints on the circular visual pattern in Fig. 8.
The weights connecting the convolutional layers conv71-
conv73 in Fig. 3 and classification scores are determined by
the spatial distributions of visual patterns for different clas-
ses. For example, the car class will have large positive
weights in the bottom region but negative weights in the
upper region for the circular pattern. On the other hand, the
traffic light class will have positive weights in the upper
region for the circular pattern.

A single output of the convolutional layer conv71 in
Fig. 3 is from multiple part scores in def61. The relationship
between parts of the same layer def61 is modeled by conv71.

The def-pooling layer has the following advantages

1) It can replace any pooling layer, and learn deforma-
tion of parts with different sizes and semantic mean-
ings. For example, at a higher level, visual patterns

can be large parts, e.g., human upper bodies, and the
def-pooling layer can capture the deformation con-
straint of human upper parts. At a middle level, the
visual patterns can be smaller parts, e.g., heads. At
the lowest level, the visual patterns can be very
small, e.g., mouths. A human upper part is com-
posed of a deformable head and other parts. The
human head is composed of a deformable mouth
and other parts. Object parts at different semantic
abstraction levels with different deformation con-
straints are captured by def-pooling layers at differ-
ent levels. The composition of object parts is
naturally implemented by CNN with hierarchical
layers.

2) The def-pooling layer allows for multiple deform-
able parts with the same visual cue, i.e., multiple
response peaks are allowed for one filter. This design
is from our observation that an object may have mul-
tiple object parts with the same visual pattern. For
example, three light bulbs co-exist in a traffic light in
Fig. 5.

3) As shown in Fig. 3, the def-pooling layer is a shared
representation for multiple classes and therefore the
learned visual patterns in the def-pooling layer can
be shared among these classes. As examples in
Fig. 8, the learned circular visual patterns are shared
as different object parts in traffic lights, cars, and
ipods.

The layers proposed in [56], [75] does not have these
advantages, because they can only be placed after the final
convolutional layer, assume one instance per object part,
and does not share visual patterns among classes.

3.5 Fine-Tuning the Deep Model with Hinge-Loss

In RCNN, feature representation is first learned with the
softmax loss in the deep model after fine-tuning. Then in a
separate step, the learned feature representation is input to

Fig. 6. The learned deformation penalty for different visual patterns. The
penalties in map 1 are low at diagonal positions. The penalties in map 2
and 3 are low at vertical and horizontal locations separately. The penalties
inmap 4 are high at the bottom right corner and low at the upper left corner.

Fig. 7. The learned part filters visualized using deepdraw [76].

Fig. 8. Repeated visual patterns in multiple object classes.
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our approach, the softmax loss is replaced by the 200
binary hinge losses when fine-tuning the deep model.
Thus the deep model fine-tuning and SVM learning steps
in RCNN are merged into one step. The extra training time
required for extracting features (� 2.4 days with one Titan
GPU) is saved.

3.6 Contextual Modeling

The deep model learned for the image classification task
(Fig. 3c) takes scene information into consideration while
the deep model for object detection (Figs. 3a and 3b) focuses
on local bounding boxes. The 1,000-class image classifica-
tion scores are used as contextual features, and con-
catenated with the 200-class object detection scores to form
a 1,200 dimensional feature vector, based on which a linear
SVM is learned to refine the 200-class detection scores. For a
specific object class, not all object classes from the image
classification model are useful. We learn a two-stage SVM
to remove most of the classes. In the first stage, all scores
from the 1,000 classes are used for learning a linear SVM. At
the second stage, the 10 classes with the largest magnitude
in the linear SVM weights learned in the first stage are
selected as features and then a linear SVM is learned for a
given object class to be detected. Therefore, only the classifi-
cation scores of 10 classes from the image classification
deep model are used for each class to be detected. The SVM
is explicitly trained but not within the network framework.
If 5, 20, 50, 100 or 1,000 classes are used, the mAP drops by
0, 0.2, 0.8, 0.9 and 4.5 percent respectively when compared
with the result of using 10 classes. This result shows that
only a few number of classes are helpful for detection. The
heuristic selection of 10 classes helps to remove the effect
from uncorrelated classes.

Take object detection for class volleyball as an example in
Fig. 9. If only considering local regions cropped from
bounding boxes, volleyballs are easy to be confused with
bathing caps and golf balls. In this case, the contextual infor-
mation from the whole-image classification scores is help-
ful, since bathing caps appear in scenes of beach and
swimming pools, golf balls appear in grass fields, and vol-
leyballs appear in stadiums. The whole images of the three

classes can be better distinguished because of the global
scenery information. Fig. 9 plots the learned linear SVM
weights on the 1,000-class image classification scores. It is
observed that image classes bathing cap and golf ball sup-
press the existence of volleyball in the refinement of detec-
tion scores with negative weights, while the image class
volleyball enhances the detection score of volleyball.

3.7 Combining Models with High Diversity

Model averaging has been widely used in object detection.
In existing works [6], [19], [20], the same deep architecture
was used. Models were different in cropping images at dif-
ferent locations or using different learned parameters. In
our model averaging scheme, we learn models under multi-
ple settings. The settings of the models used for model
averaging are shown in Table 4. They are different in net
structures, pretraining schemes, loss functions for the deep
model training, adding def-pooling layer or not. The moti-
vation is that models generated in this way have higher
diversity and are complementary to each other in improv-
ing the detection results after model averaging. For exam-
ple, although model no. 4 has low mAP, it is found by
greedy search because its pretraining scheme is different
from other models and provides complementary scores for
the averaged scores.

The 6 models as shown in Table 4 are automatically
selected by greedy search on ImageNet Det val2 from 10
models, and the mAP of model averaging is 50:3 percent on
the test data of ILSVRC2014, while the mAP of the best
single model is 47:9 percent.

4 EXPERIMENTAL RESULTS

Our experimental results are implemented based on the
Caffe [77]. Only selective search is used for proposing
regions if not specified.

Overall result on PASCAL VOC. For the VOC-2007 detec-
tion dataset [2], we follow the approach in [1] for splitting
the training and testing data. Table 1 shows the experimen-
tal results on VOC-2007 testing data, which include
approaches using hand-crafted features [13], [78], [79], [80],
[81], deep CNN features [1], [6], [46], [48], [49], [51], and
CNN features with deformation learning [75]. Since all the
state-of-the-art works reported single-model results on this
dataset, we also report the single-model result only. Our
model was pretrained on bounding box annotation, with
deformation, without context, and with GoogLeNet as the
baseline net. Ours outperforms RCNN [1] and SPP [6] by
about 5 percent in mAP. RCNN, SPN and our model are all
pre-trained on the ImageNet Cls-Loc training data and fine-
tuned on the VOC-2007 training data. Table 2 shows the
per-class mAPs for our approach with G-Ntt and RCNN

Fig. 9. The SVM weights on image classification scores (a) for the object
detection class volleyball (b).

TABLE 1
Detection mAP (Percent) on VOC-2007 Test

approach DPM HSC-DPM Regionlet Flair DP-DPM SPP RCNN RCNN-v5 fRCN RPN YOLO Superpixel Label ours

[78] [79] [80] [81] [75] [6] [1] [1] [48] [49] [51] [46]

33.7 34.3 41.7 33.3 45.2 58.5 63.1 66.0 66.9 67.6 59.1 61.4 69.0

All approaches are trained on VOC-2007 data. Bounding box regression is used in DPM, SPP, RCNN, RCNN-V5, fRCN, and our approach. Only a single
model is used for all approaches.

OUYANG ET AL.: DEEPID-NET: OBJECT DETECTION WITH DEFORMABLE PART BASED CONVOLUTIONAL NEURAL NETWORKS 7
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with VGG and GoogleNet [1]. Fig. 10 shows the analysis on
false positives using the approach in [82].

Overall result on MS-COCO. Without using context, our
single model has mAP 25.6 percent on the MS-COCO Test-
dev dataset [83].

Experimental Setup on ImageNet. The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2014 [3] con-
tains two different datasets: 1) the classification and locali-
zation (Cls-Loc) dataset and 2) the detection dataset. The
training data of Cls-Loc contains 1.2 million images with
labels of 1; 000 categories. It is used to pretrain deep models.
The same split of train and validation data from the Cls-Loc
is used for image-level annotation and object-level annota-
tion pretraining. The Det contains 200 object categories and
is split into three subsets, train, validation (val), and test
data. We follow RCNN [1] in splitting the val data into val1
and val2. Val1 is used to train models, val2 is used to evalu-
ate separate components, and test is used to evaluating the
overall performance. The val1/val2 split is the same as that
in [1].

Overall result on ImageNet Det. RCNN [1] is used as the
state-of-the-art for comparison. The source code provided
by the authors was used and we were able to repeat their
results. Table 3 summarizes the results from ILSVRC2014
object detection challenge. It includes the best results on the
test data submitted to ILSVRC2014 from GoogLeNet [4],
DeepInsight [84], UvA-Euvision [73], Berkeley Vision [1],
which ranked top among all the teams participating in the
challenge. In terms of single-model and model averaging

performance, we achieve the highest mAP. It outperforms
the winner of ILSVRC2014, GoogleNet, by 6.1 percent on
mAP. Table 4 shows the six models we used in model
averaging.

4.1 Ablation Study

The ImageNet Det is used for ablation study. Bounding box
regression is not used if not specified.

4.1.1 Baseline Deep Model and Bounding Box

Rejection

As shown in Fig. 3, a baseline deep model is used in our
DeepID-Net. Table 5 shows the results for different baseline
deep models and bounding box rejection choices. AlexNet
in [19] is denoted as A-net, ZF in [20] is denoted as Z-net,
and Overfeat in [21] is denoted as O-net. GoogLeNet in [4]
is denoted as G-net. Except for the two components investi-
gated in Table 5, other components are the same as RCNN,
while the new training schemes and the new components
introduced in Section 3.2 are not included. The configura-
tion in the second column of Table 5 is the same as RCNN
(mean mAP 29:9 percent). Based on RCNN, applying
bounding box rejection improves mAP by 1 percent. There-
fore, bounding box rejection not only saves the time for
training and validating new models, which is critical for

TABLE 2
VOC-2007 Test Detection Average Precision (Percent) for RCNN Using VGG and Our Approach

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

RCNN+VGG 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0
RCNN+G-Net 73.7 72.4 65.4 47.2 44.6 71.2 77.4 74.2 42.6 71.1 57.5 72.2 72.7 74.9 62.5 37.8 67.9 66.4 65.3 70.9 64.4
Ours+G-Net 77.1 76.8 75.6 54.5 51.9 76.1 79.5 77.7 48.0 78.2 61.1 82.1 78.1 76.1 65.9 35.4 75.3 67.2 71.7 71.9 69.0

Fig. 10. Fraction of high-scored false positives on VOC-2007 that are
due to poor localization (Loc), confusion with similar objects (Sim), con-
fusion with other VOC objects (Oth), or confusion with background or
unlabeled objects (BG).

TABLE 3
Detection mAP (Percent) on ILSVRC2014 for Top Ranked Approaches with Single Model (sgl) and Average Model (avg)

approach Flair RCNN Berkeley Vision UvA-Euvision DeepInsight GoogLeNet Superpixel Label ours

[81] [1] [1] [73] [84] [4] [46]

ImageNet val2 (avg) n/a n/a n/a n/a 42 44.5 45.4 50.7
ImageNet val2 (sgl) n/a 31.0 33.4 n/a 40.1 38.8 42.8 48.2
ImageNet test (avg) 22.6 n/a n/a n/a 40.5 43.9 45.0 50.3
ImageNet test (sgl) n/a 31.4 34.5 35.4 40.2 38.0 42.5 47.9

TABLE 4
Models Used for Model Averaging

model number 1 2 3 4 5 6

net design D-Def(O) D-Def(G) G-net G-net D-Def(G) D-Def(G)

Pretrain 1 1 1 0 1 1

loss of net h h s s h h

mAP (%) 43.3 47.3 45.5 42.1 47.3 44.9

The result of mAP is on val2 without bounding box regression and context. For
net design, D-Def(O) denotes our DeepID-Net that uses def-pooling layers
using Overfeat as baseline structure, D-Def(G) denotes DeepID-Net that uses
def-pooling layers using GoogLeNet as baseline structure, G-net denotes Goo-
gLeNet. For pretraining, 0 denotes the pretraining scheme of RCNN [1], 1
denotes the Scheme 1 in Section 3.3. For loss of net, h denotes hinge loss, s
denotes softmax loss. Bounding box rejection is used for all models. Selective
search and edgeboxes are used for proposing regions.
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Bounding box rejection is not constrained to particular
detectors such as RCNN or fast RCNN. The time required
to process one image is around 3.5 seconds per image using
RCNN and around 0.2 seconds using fast RCNN. Both with
bounding box rejection, ZF [20] performs better than Alex-
Net [19], with 0.9 percent mAP improvement. Overfeat [21]
performs better than ZF, with 4.8 percent mAP improve-
ment. GoogLeNet [4] performs better than Overfeat, with
1.2 percent mAP improvement.

Experimental results in Table 6 show the further investi-
gation on the influence of bounding box rejection scheme
in training and testing stage. Experimental results on two
different CNN architectures, i.e., A-net and Z-net, show
that the mAP is similar whether the rejection scheme in the
testing stage is used or not. And the rejection scheme in the
training stage is the main factor in improving the mAP. If
there is concern that the rejection scheme results in lower
recall of the candidate windows at the testing stage, the
rejection scheme at the testing stage can be skipped. If not
specified, bounding box rejection is used in both training
and testing stages.

4.1.2 Investigation on the Number of Object Classes at

the Pretraining Stage

In order to investigate the influence from the number of
object classes at the pretraining stage, we use the AlextNet
and train on the ImageNet classification data without using
the bounding box labels. Table 7 shows the experimental
results. As pointed out in [3], the 200 classes in ImageNet
detection corresponds to 494 classes in ImageNet classifica-
tion. Therefore, we investigate three pretraining settings:
1) use the corresponding 494-class samples in ImageNet
classification training data but train the deep model as a
200-class classification problem; 2) use the corresponding
494-class samples in ImageNet classification training data
and train the deep model as a 494-class classification prob-
lem; 3) use the 1,000-class samples in ImageNet classification

training data and train the deep model as a 1,000-class clas-
sification problem. The same fine-tuning configuration is
used for these three pretraining settings. Experimental
results show that 494-class pretraining performs better than
200-class pretraining by 3 percent mAP. 1,000-class pretrain-
ing performs better than 494-class pretraining by 4.3 percent
mAP. 3,000-class pretraining further improves the mAP by
2.4 percent compared with 1,000-class pretraining. For
3,000-class pretraining, each sample carries much more
information: for an apple image, the 3,000-class pretraining
provides further information that it is not the other 2,999
classes. And the use of more classes makes the training task
challenging and not easy to overfit.

4.1.3 Investigation on Def-Pooling Layer

Different deep model structures are investigated and results
are shown in Table 8 using the new pretraining scheme in
Section 3.3. Our DeepID-Net that uses def-pooling layers as
shown in Fig. 3 is denoted as D-Def. Using the Z-net as base-
line deep model, the DeepID-Net that uses def-pooling layer
in Fig. 3 improves mAP by 2.5 percent. Def-pooling layer
improves mAP by 2.3 percent for both O-net and G-net.
This experiment shows the effectiveness of the def-pooling
layer for generic object detection. In our implementation of
def-pooling for G-net, we only replace max-pooling by def-
pooling but did not add an additional feature maps like that
in Fig. 3b. 2.3 percent mAP improvement is still observed
on G-net by replacing the max-pooling with def-pooling.

4.1.4 Investigation on Different Pretraining Schemes

and Baseline Net Structures

There are two different annotation levels, image and object.
Table 9 shows the results for investigation on annotation
levels and net structures. When producing these results,
other new components introduced in Sections 3.4-3.6 are
not included. For pretraining, we drop the learning rate
by 10 when the classification accuracy of validation data
reaches plateau, until no improvement is found on the vali-
dation data. For fine-tuning, we use the same initial learning
rate (0.001) and the same number of iterations (20,000) for
dropping the learning rate by 10 for all net structures, which
is the same setting in RCNN [1].

TABLE 5
Study of Bounding Box (bbox) Rejection and Baseline Deep

Model on ILSVRC2014 val2

bbox rejection?
deep model

n
A-net

y
A-net

y
Z-net

y
O-net

y
G-net

mAP (%) 29.9 30.9 31.8 36.6 37.8
meadian AP (%) 28.9 29.4 30.5 36.7 37

Pretrained without bounding box labels. Def-pooling, context and bounding
box regression are not used.

TABLE 6
Study of Bounding Box (bbox) Rejection at the Training

and Testing Stage without Context or Def-Pooling

bbox rejection train?
bbox rejection test?
deep model

n
n

A-net

y
y

A-net

y
n

A-net

y
y

Z-net

y
n

Z-net

mAP (%) 29.9 30.9 30.8 31.8 31.5
meadian AP (%) 28.9 29.4 29.3 30.5 30.4

Pretrained without bounding box labels. Def-pooling, context and bounding
box regression are not used.

TABLE 7
Study of Number of Classes Used for Pretraining

number of classes 200 494 1,000 3,000

mAP (%) 22.6 25.6 29.9 32.3
meadian AP (%) 19.8 23.0 28.9 31.7

AlexNet is used. Pretrained without bounding box labels. Def-pool-
ing, context and bounding box regression are not used.

TABLE 8
Investigation on Def-Pooling for Different Baseline

Net Structures on ILSVRC2014 val2

net structure Z-net D-Def(Z) O-net D-Def(O) G-net D-Def(G)

mAP (%) 36.0 38.5 39.1 41.4 40.4 42.7
meadian (%) 34.9 37.4 37.9 41.9 39.3 42.3

Use pretraining scheme 1 but no bounding box regression or context.

OUYANG ET AL.: DEEPID-NET: OBJECT DETECTION WITH DEFORMABLE PART BASED CONVOLUTIONAL NEURAL NETWORKS 9
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Pretraining on object-level-annotation performs better
than pretraining on image-level annotation by 4.4 percent
mAP for A-net and 4.2 percent for Z-net. This experiment
shows that object-level annotation is better than image-level
annotation in pretraining deep model.

4.1.5 Investigation on the Overall Pipeline

Table 10 summarizes how performance gets improved by
adding each component step-by-step into our pipeline.
RCNN has mAP 29:9 percent. With bounding box rejection,
mAP is improved by about 1 percent, denoted byþ1 percent
in Table 10. Based on that, changing A-net to Z-net improves
mAP by 0:9 percent. Changing Z-net to O-net improvesmAP
by 4:8 percent. O-net to G-net improves mAP by 1:2 percent.
Replacing image-level annotation by object-level annotation
in pretraining, mAP is increased by 2:6 percent. By combin-
ing candidates from selective search and edgeboxes [74],
mAP is increased by 2:3 percent. The def-pooling layer fur-
ther improves mAP by 2:2 percent. Pretraining the object-
level annotation with multiple scales [18] improves mAP by
2:2 percent. After adding the contextual information from
image classification scores, mAP is increased by 0:5 percent.
Bounding box regression improves mAP by 0:4 percent.
Withmodel averaging, the final result is 50:7 percent.

4.2 Per-Class Accuracy as a Function of Object
Properties on ILSVRC14 Object Detection Data

Inspired by the analysis in [3], we perform analysis on the
object properties that influence the variation in object detec-
tion accuracy for different classes in this section. Our result
with 50.7 percent mAP on the val2 data is used for analysis.

For real-world size, deformability, and amount of tex-
ture, the following conclusion on the detection accuracy as a
function of these object properties can be drawn from the
experimental results in Fig. 11:

Real-world size, XS for extra small (e.g., nail), small (e.g., fox),
medium (e.g., bookshelf), large (e.g., car) or XL for extra large
(e.g., airplane). The object detection model performs similar

on extra small, small or medium ones, which is different
from the optimistic model in [3]. It performs better on extra
large and large objects, with extra large objects having the
highest mean AP (close to 70 percent).

Deformability within instance, Rigid (e.g., mug) or deformable
(e.g., snake). Similar to [3], we also find that deformable
objects have higher accuracy than rigid objects.

Amount of texture, none (e.g., punching bag), low (e.g., horse),
medium (e.g., sheep) or high (e.g., honeycomb). The model is bet-
ter on objects with at least median level of texture compared
to untextured or low textured objects.

The three properties above are investigated in [3] using
optimistic model, i.e., directly compare all the entries in the
past 3 years to obtain the most optimistic measurement of
state-of-the-art accuracy on each category. Using our best
performing model, similar conclusion can be drawn.

In the following, we investigate new properties that we
found influential to object detection accuracy. Object classes
are sorted in ascending order using these properties and
then uniformly grouped, i.e., all groups have the number of
classes.

Variance in Aspect Ratio. Aspect ratio is measured by the
width of the object bounding box divided by the height of
the bounding box. Objects with large variance in aspect
ratio, e.g., band aid and nail, are more likely to be slim and
have large variation in rotation, which result in the drastic
appearance change of the visual information within the
object bounding box. Therefore, as shown in Fig. 12, objects
with lower variance in aspect ratio performs better.

TABLE 9
Ablation Study of the Two Pretraining Schemes in Section 3.3 for Different Net Structures on ILSVRC2014 val2

net structure A-net A-net A-net Z-net Z-net Z-net Z-net O-net O-net G-net G-net

class number 1,000 1,000 1,000 1,000 200 1,000 1,000 1,000 1,000 1,000 1,000
bbox rejection n n y y n n y y y y y
pretrain scheme 0 1 1 0 1 1 1 0 1 0 1
mAP (%) 29.9 34.3 34.9 31.8 29.9 35.6 36.0 36.6 39.1 37.8 40.4
meadian AP (%) 28.9 33.4 34.4 30.5 29.7 34.0 34.9 36.7 37.9 37.0 39.3

Scheme 0 only uses image-level annotation for pretraining. Scheme 1 uses object-level annotation for pretraining. Def-pooling bounding box regression and con-
text are not used.

TABLE 10
Ablation Study of the Overall Pipeline for Single Model on ILSVRC2014 val2

detection pipeline RCNN +bbox
rejection

A-net
to Z-net

Z-net
to O-net

O-net
to G-net

image to bbox
pretrain

+edgbox
candidate

+Def
pooling

+multi-scale
pretrain

+context +bbox
regression

mAP (%) 29.9 30.9 31.8 36.6 37.8 40.4 42.7 44.9 47.3 47.8 48.2
meadian AP (%) 28.9 29.4 30.5 36.7 37.0 39.3 42.3 45.2 47.8 48.1 49.8
mAP improvement (%) +1 +0.9 +4.8 +1.2 +2.6 +2.3 +2.2 +2.4 +0.5 +0.4

It shows the mean AP after adding each key component step-by-step.

Fig. 11. The mean average precision of our best-performing model in the
y-axis as a function of real-word size (left), deformability (middle), and
texture (right) in the x-axis.
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their parts not existing in the bounding box because of
occlusion or tight-shot. The variation in part existence
causes the appearance variation for object of the same class.
For example, a backpack with only its belt in the bounding
box is very different in appearance from a backpack with its
bag in the bounding box. We labeled the object parts and
their existences for all the 200 classes on the val1 data and
use them for obtaining the variance in part existence. As
shown in Fig. 12, objects with lower variance in part exis-
tence performs better.

Variance in Rotation. In-plane and out-of-plane rotation
are factors that influence the within-class appearance varia-
tion. An ax with frontal view is very different in appearance
from an ax with side view. An upright ax is very different
in appearance from a horizontal ax. We labeled the rotation
of objects for all the 200 classes on the val1 data and use
them for obtaining the variance in rotation. As shown in
Fig. 12, objects with lower variance in rotation performs
better.

Number of Objects per Image. The number of object per
image for the cth object class, denoted by Nc, is obtained as
follows:

Nc ¼ 1

Pc

XPc
pc¼1

ðnpcÞ; (8)

where npc is the number of objects within the image of the
pcth sample for class c, pc ¼ 1 . . . ; Pc. Nc is obtained from the
val1 data. When there are large number objects within an
image, they may occlude each other and appear as back-
ground for the ground truth bounding box of each other,
resulting in the added complexity of object appearance and
background clutter. As shown in Fig. 13, some small objects,
bee and butterfly, have less than two objects per image on
average. And they have very high AP, 90.6 percent for but-
terfly and 76.9 percent for bee. We find that the images in
val1 with these samples are mostly captured by tight shot,
and they have relatively simple background. As shown in
Fig. 13, the model performs better when the number of
objects per image is smaller.

Mean Area per Bounding Box. We measure the size of the
bounding box by the area (width multiplied by height) of
this bounding box. We did not use the bounding box size
over image size in [3] because the image size may have
influence on image classification and object localization but
should have small influence on object detection, in which
bounding box is independently evaluated. As shown in
Fig. 14, the average area for different objects varies a lot.
Sofa has the largest mean area. Although butterfly and bee
are extra small in real-world size, they are large in average
areas, 36.8 k for bee and 57.7 k for butterfly. As shown in
Fig. 13, the average AP is higher when the mean area per
bounding box is larger.

Recall from Region Proposal. In our model, selective search
and edgeboxes are used for proposing the regions. After
bounding box rejection, 302 boxes per image are obtained on
val1. The average recall is 89.19 percent for overlap greater
than 0.5 and 78.98 percent for overlap greater than 0.7.

Fig. 15 shows the five classes with lowest and highest
average precision and their corresponding factors. The five
object classes with the lowest accuracy are mostly none-
deformable, having low texture, small bounding box size,
large number of objects per image, large variation in aspect
ratio, part existence and rotation.

We also tried other properties, like variation in bounding
box size, average aspect ratio, number of positive samples,
but did not find them to have strong correlation to the detec-
tion accuracy.

Fig. 16 shows the object classes with large mAP improve-
ment and mAP drop when the def-pooling is used. 140 of
the 200 classes have their mAP improved. Def-pooling

Fig. 12. The mean average precision of our best-performing model in the
y-axis as a function of the variance in aspect ratio (left), part existence
(middle) and in-plane, out-plane rotation(right). The x-axis denotes the
average variance of each group.

Fig. 13. Number of objects per image for different classes (left) and the
detection accuracy as a function of the average number of objects per
image.

Fig. 14. The average size of the bounding box for different classes (left)
and the detection accuracy as a function of the average number of
objects per image.

Fig. 15. The factors for the five object classes with lowest AP (top) and
highest AP (bottom). The y-axis denotes the group index g for the factors
in Figs. 11-14, e.g., deformation (g ¼ f0; 1g), real-world size (g ¼
f1; . . . ; 5g), texture (g ¼ f1; . . . ; 4g), box size (g ¼ f1; . . . ; 5g). Larger g
denotes higher deformation, real size, texture etc. The x-axis corresponds
to different object classes, e.g., ski, ladle, with different factors, e.g., defor-
mation, real size, texture. Legends denote different object classes.
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brings large mAP gains for mammals like squirrel with
deformation and instruments like banjo with rotation. How-
ever, man-made objects such as waffle iron, digital clock,
cocktail shaker and vacuum have inconsistent existence of
object parts, large variation in rotation and part appearance.
Therefore, the mAP gains are negative for these man-made
objects.

Fig. 17 shows the detection accuracy for object classes
grouped at different WordNet hierarchical levels. It can
be seen that vertebrates that are neither mammal nor fish,
i.e., bird, frog, lizard, snake, and turtle, have the largest
mAP. Mammals also have large mAP because mammals
share similar appearance, have rich texture and have
many object classes that help each other in learning their
feature representations. Generally, artifacts have lower
mAP because they have low texture and large variation
in shape. Texts in dashed boxes of Fig. 17 show the abso-
lute mAP gain obtained by bounding box rejection and
def-pooling for each group. It can be seen that def-
pooling has 9.5 percent mAP gain for detecting person.
Def-pooling has higher mAP gain (4.6 percent) for mam-
mals with regular deformation and part appearance than
substances (0.4 percent) with irregular deformation and
part appearance.

5 CONCLUSION

This paper proposes a deep learning based object detection
pipeline, which integrates the key components of bounding
box reject, pretraining, deformation handling, context
modeling, bounding box regression and model averaging. It
significantly advances the state-of-the-art from mAP 31:0
percent (obtained by RCNN) to 50:3 percent on the Image-
Net object task. Its single model and model averaging per-
formances are the best in ILSVC2014. A global view and
detailed component-wise experimental analysis under the
same setting are provided to help researchers understand
the pipeline of deep learning based object detection.

We enrich the deep model by introducing the def-pooling
layer, which has great flexibility to incorporate various defor-
mation handling approaches and deep architectures. Moti-
vated by our insights on how to learn feature representations
more suitable for the object detection task and with good
generalization capability, a pretraining scheme is proposed.
By changing the configurations of the proposed detection

pipeline, multiple detectors with large diversity are obtained,
which leads to more effective model averaging. This work
shows the important modules in an object detection pipeline,
although each has its own parameter setting set in an ad hoc
way. In the future, we will design an end-to-end system that
jointly learns thesemodules.

APPENDIX A: RELATIONSHIP BETWEEN THE

DEFORMATION LAYER AND THE DPM

The quadratic deformation constraint in [13] can be repre-
sented as follows:

~mði;jÞ ¼mði;jÞ � a1 i�b1þ a3
2a1

� �2

�a2 j�b2þ a4
2a2

� �2

; (9)

where mði;jÞ is the ði; jÞth element of the part detection map
M, ðb1; b2Þ is the predefined anchor location of the pth part.
They are adjusted by a3=2a1 and a4=2a2, which are automat-
ically learned. a1 and a2 (9) decide the deformation cost.
There is no deformation cost if a1 ¼ a2 ¼ 0. Parts are not

allowed to move if a1 ¼ a2 ¼ 1. ðb1; b2Þ and ð a3
2a1

; a4
2a2

Þ jointly
decide the center of the part. The quadratic constraint in
Eq. (9) can be represented using Eq. (1) as follows:

~mði;jÞ ¼mði;jÞ � a1d
ði;jÞ
1 � a2d

ði;jÞ
2 � a3d

ði;jÞ
3 � a4d

ði;jÞ
4 �a5;

d
ði;jÞ
1 ¼ði� b1Þ2; d

ði;jÞ
2 ¼ðj� b2Þ2; dði;jÞ3 ¼ i� b1;

d
ði;jÞ
4 ¼j� b2; a5 ¼ a3

2=ð4a1Þ þ a4
2=ð4a2Þ:

(10)

In this case, a1; a2; a3 and a4 are parameters to be learned

and dði;jÞn for n ¼ 1; 2; 3; 4 are predefined. a5 is the same in all

locations and need not be learned. The final output is

b ¼ max
ði;jÞ

~mði;jÞ; (11)

where ~mði;jÞ is the ði; jÞth element of the matrix ~M in (9).

Fig. 16. The factors for the object classes with mAP improvement (top)
and mAP drop (bottom) introduced by the def-pooling. The meaning of x
and y axes are the same as Fig. 15. Legends denote different object
classes and their mAP change caused by def-pooling.

Fig. 17. The detection accuracy for object classes grouped at different
WordNet hierarchical levels. Tilted text at the upper right of the circle
denotes the number of classes within the 200 object classes of the
ILSVRC14 detection task for this WordNet synonym set (synset). Texts
at the upper left of the circle denote the absolute mAP gain obtained by
bounding box rejection and def-pooling. Un-tilted text below the circle
denote the mAP in percentage for this WordNet synset. For example,
the WordNet synset ‘matter’ has height 13, 22 object classes and mAP
49.7 percent, bounding box rejection has mAP gain of 1.34 percent and
the def-pooling has mAP gain of 0.4 percent. The ‘other vertebrates’
denotes the object classes that are vertebrates but not mammal or
aquatic vertebrate, similarly for ‘other artifacts’ and ‘other instruments’.
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