
IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Jointly learning deep features, deformable parts,
occlusion and classification for pedestrian

detection
Wanli Ouyang, Senior Member, IEEE, Hui Zhou, Student Member, IEEE ,

Hongsheng Li, Member, IEEE ,Quanquan Li Member, IEEE , Junjie Yan, Member, IEEE ,
Xiaogang Wang Member, IEEE

Abstract—Feature extraction, deformation handling, occlusion handling, and classification are four important components in pedestrian
detection. Existing methods learn or design these components either individually or sequentially. The interaction among these
components is not yet well explored. This paper proposes that they should be jointly learned in order to maximize their strengths
through cooperation. We formulate these four components into a joint deep learning framework and propose a new deep network
architecture ( Code available on www.ee.cuhk.edu.hk/∼wlouyang/projects/ouyangWiccv13Joint/index.html). By establishing automatic,
mutual interaction among components, the deep model has average miss rate 8.57%/11.71% on the Caltech benchmark dataset with
new/original annotations.

Index Terms—CNN, convolutional neural networks, object detection, deep learning, deep model

✦

1 INTRODUCTION

Pedestrian detection is a key technology in automotive safety,
robotics, and intelligent video surveillance. It has attracted a
great deal of research interest [3], [9], [17], [70], [12]. The
main challenges of this task are caused by the intra-class
variation of pedestrians in clothing, lighting, backgrounds,
articulation, and occlusion.

In order to handle these challenges, a group of inter-
dependent components are important. First, features should
capture the most discriminative information of pedestrians.
Well-known features such as Haar-like features [72], SIFT
[37], and HOG [9] are designed to be robust to intra-class vari-
ation while remain sensitive to inter-class variation. Recently,
deeply learned features are found to be effective in pedestrian
detection and generic object detection [82], [81], [49], [54],
[66], [26], [88]. Second, deformation models should handle the
articulation of human parts such as torso, head, and legs. The
state-of-the-art deformable part-based model in [22] allows
human parts to articulate with constraint. Third, occlusion
handling approaches [18], [76], [24], [42] seek to identify the
occluded regions and avoid their use when determining the
existence of a pedestrian in a window. Finally, a classifier
decides whether a candidate window shall be detected as
enclosing a pedestrian. SVM [9], boosted classifiers [16],
random forests [14], and their variations are often used.

Although these components are interdependent, their in-

• Wanli Ouyang, Hui Zhou, Hongsheng Li, Quanquan Li, Xiaogang Wang are
with the Department of Electronic Engineering at the Chinese University of
Hong Kong, Hong Kong. Junjie Yan is with the SenseTime Group Limited.
Wanli Ouyang and Xiaogang Wang are corresponding authors.
E-mail: wlouyang, xgwang@ee.cuhk.edu.hk.

teractions have not been well explored. Currently, they are
first learned or designed individually or sequentially, and
then put together in a pipeline. The interaction among these
components is usually achieved using manual parameter con-
figuration. Consider the following three examples. (1) The
HOG feature is individually designed with its parameters
manually tuned given the linear SVM classifier being used in
[9]. Then the HOG feature is fixed when people design new
classifiers [40]. (2) A few HOG feature parameters are tuned
in [22] and fixed, and then different part models are learned in
[22], [93]. (3) By fixing HOG features and deformable models,
occlusion handling models are learned in [46], [50], using the
part-detection scores as input.

As shown in Fig. 1, the motivation of this paper is to
establish automatic interaction in learning these key compo-
nents. We hope that jointly learned components, like members
with team spirit, can create synergy through close interaction,
and generate performance that is greater than individually
learned components. For example, well-learned features help
to locate parts, meanwhile, well-located parts help to learn
more discriminative features for different parts. This paper
formulates the learning of these key components into a unified
deep learning problem. The deep model is especially appro-
priate for this task because it can organize these components
into different layers and jointly optimize them through back-
propagation.

This paper makes the following three main contributions.
1) A unified deep model for jointly learning feature extraction,

a part deformation model, an occlusion model and classi-
fication. With the deep model, these components interact
with each other in the learning process, which allows each
component to maximize its strength when cooperating with
others.

www.ee.cuhk.edu.hk/~wlouyang/projects/ouyangWiccv13Joint/index.html


IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Feature
extraction

Part deformation 
handling

Deformable 
part-based

model
HOG

Occlusion
handling

Occlusion
handling
methods

Classification

SVM

Example

Components:

This paper jointly learns

Example Example Example

Figure 1. Motivation of this paper to jointly learn the
four key components in pedestrian detection: feature ex-
traction, deformation handling models, occlusion handling
models, and classifiers.

2) We enrich the operation in deep models by incorporating
the deformation layer into the convolutional neural net-
works (CNN) [35]. With this layer, various deformation
handling approaches can be applied to our deep model.

3) The features are learned from pixels through interaction
with deformation and occlusion handling models. Such
interaction helps to learn more discriminative features.

2 RELATED WORK

It has been proved that deep models are potentially more
capable than shallow models in handling complex tasks [5].
They have achieved spectacular progress in computer vision
[28], [29], [60], [32], [34], [45], [33], [86], [39], [67], [21],
[58], [81], [82], [74], [75], [92]. Deep models for pedestrian
detection focus on feature learning [64], [45], contextual
information learning [87], and occlusion handling [46]. Recent
reviews and performance evaluations are provided in [ 4], [17].

Many features are utilized for pedestrian detection. Haar-
like features [72], [89], HOG [9], and dense SIFT [71] are
designed to capture the overall shape of pedestrians. First-
order color features like color histograms [16], various channel
features [91], [16], [13], second-order color features like color-
self-similarity (CSS) [73] and co-occurrence features [63] are
also used for pedestrian detection. Texture feature like LBP are
used in [76]. Other types of features include the covariance
descriptor [70], depth [20], segmentation results [18], 3D
geometry [30], motion [57], and their combinations [36], [76],
[16], [73], [18], [63]. All the features mentioned above are
designed manually. Recently, researchers have become aware
of the benefit of learning features from training data [2], [45],
[64], [82], [31], [38], [69], [68]. Similar to HOG, they use local
max pooling or average pooling to be robust to small local
misalignment. However, these approaches do not learn the
variable deformation properties of body parts. The approaches
in [11], [8] learn features and a part-based model sequentially
but not jointly.

Since pedestrians have non-rigid deformation, the ability
to handle deformation improves detection performance. De-
formable part-based models are used in [22], [93], [56], [48],
[51], [80] for handling translational movement of parts. To
handle more complex articulations, size change and rotation
of parts are modeled in [23], and mixture of part appearance
and articulation types are modeled in [6], [83], [10]. In these
approaches, features are manually designed.

Recently, the learning of deformation from convolutional
layers is presented in [47], [27], [49]. First, par visibility
learning is learned in our approach but not learned in these
approaches. Second, these approaches can only place the
deformation handling after the convolutional layers, which
restricts the deep architecture especially for AlexNet [33],
ZF-Net [85] and VGG [66] with fully connected layers. We
provide a CNN design and show that deformation handling
can be used even for the models with fully connected layers
by treating them as the filter for full body.

In order to handle occlusion, many approaches have been
proposed for estimating the visibility of parts [18], [76],
[79], [78], [65], [36], [68], [52], [53]. Some of them use
the detection scores of blocks or parts [76], [46], [18], [79],
[68] as input for visibility estimation. The approach in [42]
handles occlusion by designing multiple classifiers. Some use
other cues like segmentation results [36], [18] and depth [18].
However, all these approaches learn the occlusion modeling
separately from feature extraction and part models.

The widely used classification approaches include various
boosting classifiers [14], [16], [78], linear SVM [9], histogram
intersection kernel SVM [40], latent SVM [22], multiple
kernel SVM [71], structural SVM [93], and probabilistic
models [3], [43]. In these approaches, classifiers are adapted
to training data, but features are designed manually. If useful
information has been lost at feature extraction, it cannot be
recovered during classification. Ideally, classifiers should guide
feature learning.

In summary, previous works treat the components individ-
ually or sequentially. This paper takes a global view of these
components and is an important step towards joint learning of
them for pedestrian detection.

3 THE BASIC DEEP MODEL

3.1 Overview

An overview of our examplar deep model is shown in Fig. 2.
In this model:
1) Input image data are obtained by warping the candidate

box into 3 channels.
2) Feature maps are obtained by a convolutional layer and its

following average pooling layer. The 3-channel input image
data is convolved with 9× 9× filters and outputs 64 maps.
|tanh(x)|, i.e. activation function tanh and absolution
value rectification, is used for each filter response x. Then
the 64 filtered data maps goes through the average pooling
layer using 4 × 4 boxcar filters with a 4 × 4 subsampling
step.

3) Part detection maps are obtained from the second convolu-
tional layer. This layer convolves the feature maps with 20



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Convolutional
layer 1

Image data

Average
pooling

64

Extracted
feature

map

Visibility
reasoning and 
classification

64

Filtered data map

Part 
score

Convolutional
layer 2

Deformation
layer

20

Part 
detection

map

9
9

28

84

20

76 5

19

...

20

3

...

...

...
4×4

y

Figure 2. Overview of our basic deep model. Image data is convolved with 64 9× 9× 3 filters and averagely pooled to
obtain 64 feature maps. The feature maps are then processed by the second convolutional layer and the deformation
layer to obtain 20 part scores. Finally the visibility reasoning model is used to estimate the detection label y.

Y Channel YUV Channels
reduced resolution

Edges of YUV 
reduced resolution

Figure 3. Preparation of three-channel input data, i.e. 84×
28 Y-channel image (left), concatenation of 42 × 14 YUV
channels (right), and concatenation of the edges for 42×
14 YUV image.

part filters of different sizes and outputs 20 part detection
maps. Details are given in Section 3.3.

4) Part scores are obtained from the 20 part detection maps
using a deformation modeling layer. This layer outputs 20
part scores. Details are given in Section 3.4.

5) The visibility reasoning of 20 parts is used for estimating
the label y; that is, whether a given window encloses a
pedestrian or not. Details are given in Section 3.5.

At the training stage, all the parameters are optimized through
back-propagation (BP).

3.2 Input data preparation
The detection windows of different sizes are warped into
images with height 84 and width 28, in which pedestrians
have height 60 and width 20. Then the 3-channel input data
for CNN are obtained as follows:

(1) The first channel is a 84× 28 Y-channel image after the
image is converted into the YUV color space.

(2) The 42 × 14 images in the YUV color space are
concatenated into the second channel of size 84×28 with zero
padding. The 42 × 14 images are warped from the 84 × 28
images.

(3) Four 42× 14 edge maps are concatenated into the third
channel of size 84× 28. Three edge maps are obtained from
the three-channel 42 × 14 image in the YUV color space.
The magnitudes of horizontal and vertical edges are computed
using the Sobel edge detector. The fourth edge map is obtained
by choosing the maximum magnitudes from the first three edge
maps.

Fig. 3 shows the three channels for a pedestrian patch. In
this way, information about pixel values at different resolutions
and information of primitive edges are utilized as the input
of the first convlutional layer to extract features. The first
convolutional layer and its following average pooling layer
use the standard CNN settings.

We empirically find that it is better to arrange the images
and edge maps into three concatenated channels instead of
eight separate channels. In order to deal with illumination
change, the data in each channel is preprocessed to be zero
mean and unit variance.

3.3 Generating the part detection map

Normally, the filter size of a convolutional layer is fixed [35],
[33]. Since the parts of pedestrians have different sizes, we
design the filters in the convolutional layer with variable sizes
when obtaining part detection maps. As shown in Fig. 4(a),
we design parts at three levels with different sizes. There are
six small parts at level 1, seven medium-sized parts at level
2, and seven large parts at level 3, as shown in Fig. 4(a).



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Level 3

Level 2

Level 1

(a)

(b)

Figure 4. The parts model (a) and the filters (b) learned
at the second convolutional layer. We follow [19] and
visualize the filter that optimizes the corresponding stimuli
of the neurons, which is also used in [34].

A part at an upper level is composed of parts at the lower
level. Parts at the top level are also the possible occlusion
statuses. Gray color indicates occlusion. The other two levels
are body parts. In the figure, the head-shoulder part appears
twice (representing occlusion status at the top level and part
at the middle level respectively) because this body part itself
can generate an occlusion status. Fig. 4(b) shows a few part
filters learned with our deep model. They are visualized using
the activation maximization approach in [19]. The figure shows
that the head-shoulder at level 2 and the head-shoulder at level
3 extract different visual cues from the input image. The head-
shoulder filters in Fig. 4(b) contain more detailed silhouette
information on heads and shoulders than the head-shoulder
filter learned with HOG in Fig. 1. The two-legs filter in Fig.
4(b) is visually more meaningful than the one learned with
HOG in Fig. 1.

3.4 The deformation layer

In order to learn the deformation constraints of different parts,
we propose the deformation handling layer (deformation layer
for short) for the CNNs.

Denote pth part detection map by Mp, p = 1, . . . , P . The
deformation layer takes the P part detection maps as input and
outputs P part scores s = {s1, . . . , sP }, P = 20 in Fig. 2.
The deformation layer treats the part detection maps separately
and produces the pth part score sp from the p part detection
map Mp. A 2D summed map, denoted by Bp, is obtained by
summing up the part detection map Mp and the deformation

maps as follows:

Bp = Mp −
N∑

n=1

cn,pDn,p. (1)

Dn,p denotes the nth deformation map for the pth part, cn,p
denotes the weight for Dn,p, and N denotes the number of
deformation maps. sp is globally max-pooled from Bp in Eq.
(1):

sp = max
(x,y)

b(x,y)p , (2)

where b
(x,y)
p denotes the (x, y)th element of Bp. The detected

part location can be inferred from the summed map as follows:

(x̃p, ỹp) = argmax
(x,y)

b(x,y)p . (3)

The cn,p and Dn,p in (1) are the keys for designing different
deformation models. Both cn,p and Dn,p can be considered as
the parameters to be learned. Three examples are given below.

3.4.1 Example 1
Suppose N = 1, c1,p = 1 and the deformation map D1,p is
the parameter to be learned. In this case, the discrete locations
of the pth part are treated as bins and the deformation cost for
each bin is learned. d(x,y)1,p , which denotes the (x, y)th element
of D1,p, corresponds to the deformation cost of the pth part
at location (x, y). For D1,p of size HD ×WD , there are HD ·
WD parameters to be learned. The approach in [59] treats
deformation cost in this way.

3.4.2 Example 2
D1,p can also be predefined. Suppose N = 1 and cn,p = 1. If
d
(x,y)
1,p is the same for any (x, y), then there is no deformation

cost. If d(x,y)1,p = ∞ for (x, y) /∈ X, d(x,y)1,p = 0 for (x, y) ∈ X,
then the parts are only allowed to move freely in the location
set X. Max-pooling is a special case of this example by setting
X to be a local region. The disadvantage of max-pooling is
that the hand-tuned local region X does not adapt to different
deformation properties of different parts.

3.4.3 Example 3
The deformation layer can represent the widely used quadratic
constraint of deformation in the deformable part model (DPM)
[22].

DPM. An object hypothesis specifies the location of each
part in the model l = (l1, . . . , lP ), where lp = (xp, yp)
specifies the location of the pth part. The root part corresponds
to p = 1. In DPM, the score of the pth part is given by its
part detection score at location lp (the data term) minus a
deformation cost that depends on the relative position of pth
part with respect to the root (the spatial prior) as follows:

score(lp)=s(I, lp)−< cp, ψ(l1, lp) >, (4)

where s(I, lp) (the data term) denotes the pth part detection
score at location lp for image I . The spatial prior in (4) is
modeled as follows:

< dp, ψ(l1, lp) >=c1,p(xp − x1 − ax,p)
2 + c2,p(yp − y1 − ay,p)

2

+ c3,p(xp − x1 − ax,p) + c4,p(yp − y1 − ay,p),
(5)



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

where ci,p for i = 1, 2, 3, 4 are parameters to be learned,
(xp, yp) are locations of the pth part with (x1, y1) being the
root, (ax,p, ay,p) denotes the relative anchor location between
the pth part and the root.

Relationship between the DPM and the deformation layer.
Below, we skip the subscript p used in (1)-(5) to be concise.
The deformation layer in (1) can be represented as follows:

Bp = Mp +

4∑
n=1

cn,pDn,p,

b
(xp,yp)
p =m

(xp,yp)
p +

4∑
n=1

cn,pd
(xp,yp)
n,p ,

d
(xp,yp)
1,p =(xp − x1 − ax,p)

2, d
(xp,yp)
2,p =(yp − y1 − ay,p)

2,

d
(xp,yp)
3,p =xp − x1 − ax,p, d

(xp,yp)
4,p =yp − y1 − ay,p, (6)

where d
(x,y)
n,p is the (x, y)th element of Dn,p and m(x,y)

is the (x, y)th element of the part detection map Mp. The
m(x,y) in (6) corresponds to the data term s(I, lp) (4) and
the

∑4
n=1 cn,pDn,p in (6) corresponds to the spatial prior

of DPM in (5). In DPM [22], the part score s(I, lp) for all
locations lp ∈ L is obtained by convolving HOG features with
part filters. In our CNN, the part detection score m(x,y) is
obtained by convolving CNN features with CNN part features
as illustrated in Section 3.3. c1, c2, c3 and c4 are parameters to
be learned and Dn for n = 1, 2, 3, 4 are predefined according
to the pre-defined anchor (ax, ay) and root location (x1, y1).
Fig. 5 illustrates this example. There is no deformation cost
if cn = 0 for n = 1, 2, 3, 4. Parts are not allowed to move
if c1 = c2 = ∞. (ax, ay) and (c3,p, c4,p) jointly decide the
center of the part.

Details of our implementation of the deformation layer.
Example 3, i.e. the formulation in (6), is used as our implemen-
tation of the deformation layer. With both spatial constraint
and part scores considered, the summed map B is obtained
using (6). The next step is to obtain the maximum score from
the summed map B, which corresponds to the formulation
in (2). The same quadratic constraint is used for deformation
layer model in (6) and the DPM model in (5). In order to obtain
the maximum score from the summed map B, the distance
transform [23] used by DPM is used by our deformation layer
for faster speed in the code provided online.

At the training stage, the gradient of a given loss L for the
parameters cn,p are as follows:

∂L

∂cn,p
=

∂L

∂sp

∂sp
∂cn,p

=
∂L

∂sp
d
(x̃p,ỹp)
n ,

(7)

where (x̃p, ỹp) = argmax(x,y)Bp, ∂L
∂sp

is the derivative
propagated from the loss to the output sp of the deformation
layer. Therefore, only the value at location (x̃p, ỹp) is used
for learning the deformation parameter cn,p during the back-
propagation.

3.5 Visibility reasoning and classification

The deformation layer in Section 3.4 provides the part scores
s = {s1, . . . , sP } using Eq. (2). s is then used for visibility

Part detection 
map

D1,p D2,p D3,p D4,pMp

Deformation maps

c1,p
c3 ,p c4,pc 2, p

Summed map Part score

Bp sp

High 
value

Low 
value

Global max 
pooling

Figure 5. The deformation layer when deformation map
is defined in (6). Part detection map Mp and deforma-
tion maps Dn,p are summed up with weights cn,p for
n = 1, 2, 3, 4 to obtain the summed map Bp. Global max
pooling is then performed on the summed map Bp to
obtain the score sp for the pth part.

reasoning and classification. We adopt the model in [46] to
estimate visibility.

Fig. 6 shows the model for the visibility reasoning and
classification in Fig. 2. Denote the score and visibility of
the jth part at level l as slj and hl

j respectively. Denote the
visibility of Pl parts at level l by hl = [hl

1 . . . hl
Pl
]T. Given

s, the model for BP and inference is as follows:
h̃1
j = σ(c1j + g1j s

1
j),

h̃l+1
j = σ(h̃lT

wl
∗,j + cl+1

j + gl+1
j sl+1

j ), l = 1, 2,

ỹ = σ(h̃3Twcls + b),

(8)

where σ(t) = (1 + exp(−t))−1 is the sigmoid function, g l
j is

the weight for slj , c
l
j is its bias term, Wl models the correlation

between hl and hl+1, wl
∗,j is the jth column of Wl, wcls

is considered as the linear classifier for the hidden units h̃3,
and ỹ is the estimated detection label. Hidden variables at
adjacent levels are connected. wl

∗,j represents the relationship
between h̃l and h̃l+1

j . A part can have multiple parents and
multiple children. The visibility of one part is correlated with
the visibility of other parts at the same level through shared
parents. glj , c

l
j , W

l, wcls, and b are parameters to be learned.
The differences between the deep model in this paper and

the approach in [46] are as follows:
1. The parts at levels 1 and 2 propagate information to

the classifier through the parts at level 3 in [46]. But the
imperfect part scores at level 3 may disturb the information
from levels 1 and 2. This paper includes extra hidden nodes at
levels 2 and 3. These nodes provide branches that help parts
at level 1 and level 2 to directly propagate information to the
classifier without being disturbed by other parts. These extra
hidden nodes do not use detection scores and have the term
gl+1
j sl+1

j = 0 in (8). They are represented by white circles in
Fig. 6, while the hidden nodes with the term g l+1

j sl+1
j �= 0 in

(8) are represented by gray circles.



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

3
1,1h 3

2,1h 3
3,1h 3

4,1h 3
5,1h 3

6,1h 3
7,1h

Level 3

Level 2

Level 1
1

1,1h 1
2,1h 1

3,1h 1
4,1h1

5,1h 1
6,1h

h1
3

h1
1

h1
2

. . .

h3h1

. ..
.. ....

s

h2

. . .
.. .

y

2
1,1h 2

2,1h 2
3,1h 2

4,1h 2
5,1h 2

6,1h 2
7,1h

3
1,1s

2
1,1s

1
1,1s

Figure 6. The visibility reasoning and detection label
estimation model. For the ith part at the lth level, sli is
the detection score and hl

i is the visibility. For example, h11
indicates the visibility of the left-head-shoulder part. Best
viewed in color.

2. The approach in [46] only learns the visibility relationship
from part scores. Both HOG features and the parameters
for the deformation model are fixed in [46]. In this paper,
features, deformable models, and visibility relationships are
jointly learned. In order to learn the parameters in the two
convolutional layers and the deformation layer in Fig. 2,
prediction error is back-propagated through s. The gradient
for s is:

∂L

∂sli
=

∂L

∂hl
i

∂hl
i

∂sli
=
∂L

∂hl
i

hl
i(1− hl

i)g
l
i, (9)

where
∂L

∂h3
i

=
∂L

∂ỹ
ỹ(1− ỹ)wcls

i ,

∂L

∂h2
i

= w2
i,∗

[
∂L

∂h3
� h3 � (1− h3)

]
,

∂L

∂h1
i

= w1
i,∗

[
∂L

∂h2
� h2 � (1− h2)

]
,

(10)

� denotes the Hadamard product; that is (U � V )i,j =
Ui,jVi,j , wl

i,∗ is the ith row of Wl, and wcls
i is the ith

element of the wcls. L is the loss function. For example
L = (ygnd− ỹ)2/2 is for the square loss, and ygnd the ground-
truth label. L = ygnd log ỹ + (1 − ygnd) log(1 − ỹ) is for the
log loss, which is chosen in this work.

In order to train this deep architecture, we adopt a multi-
stage training strategy. We start with a 1-layer CNN using
supervised training. Since Gabor filters are similar to the
human visual system, they are used for initialing the first CNN.
We add one more layer at each stage, the layers trained in the
previous stage are used for initialization and then all the layers
at the current stage are jointly optimized with BP.

4 THE EXTENDED JOINT DEEP LEARNING
MODEL FOR DEEP CNN
The deep model shown in Fig. 2 has only 2 convolutional
layers. It is found that very deep models like VGG perform

well on general object detection [26]. Therefore, we extend the
model in Fig. 2 and propose an extended model for using the
VGG and fast R-CNN in our framework. The extended model
is shown in Fig. 7. In the extended framework, the following
procedure is used in the deep model:
1) The whole image is treated as the input and then a deep

CNN is used for extracting convolutional features. In our
implementation, the 16-layer VGG [66] is used. The change
from YUV in the basic model to RGB in the extended
model is because the pretrained VGG model is based on
the RGB input.

2) The roi-pooled feature map pl5 with fixed size (7 × 7)
is obtained using the roi-pooling introduced in [25]. The
input of the roi-pooling is the candidate region of interest
(roi) and the last convolutional layer of VGG in our
implementation. The rois are obtained using the region
proposal network [61] in our implementation.

3) The roi-pooled feature map of size 7×7 in width and height
is connected to two fully connected layers (fc6 and fc7).
The features of fc7 is used for classification from the whole
pedestrian region (fc8). The classification score from fc8 is
treated as the detection score for the full body.

4) In order to obtain features with different sizes, we also
connect the roi-pooled feature map to convolutional layers
conv61, conv62, and conv63 with kernel sizes 5 × 5,
3 × 3, and 1 × 1 respectively. Padding is used for these
convolutional layers so that their spatial sizes are unchanged
after convolution, e.g. padding of 1 for kernel size 3× 3.

5) Similar to the fully connected layers fc7 we use 1 convolu-
tional layer conv7i to obtain features with more depth from
conv6i, i = 1, 2, 3.

6) Similar to fc8, we use 1 convolutional layers conv8 i to
obtain the part detection maps from the output of the layers
conv7i for i = 1, 2, 3.

7) Part scores def8i are obtained from the part detection maps
conv8i using the deformation layers.

8) Visibility reasoning and detection label estimation is con-
ducted based on the scores fc8 and def8 i for i = 1, 2, 3.
Fig. 8 shows the details on the kernel size, padding, output

map size of the convolutional layers and deformation layers
after the pooled features. The layers pl5, fc6, fc7 and fc8
are from the original VGG model. Other layers are added for
obtaining scores of pedestrian parts with different sizes. The
full-body part is used by both the basic model in Section 3 and
the extended model. Pedestrian parts of different sizes are used
in both the model in Section 3 and the extended model. Multi-
resolution is not used in both models. Comparison between the
original VGG layers and our additional layers is as follows:
1) Each neuron in the fc6 output map covers the whole

pedestrian region. And the score from fc8 consider the
whole pedestrian region. The fc6 layer from the original
VGG can also be considered as a convolutional layer with
kernel size 7 × 7 and without padding. The additional
layers conv61, conv62, and conv63 cover partial pedestrian
regions. A neuron in conv63 covers only a 1×1 roi-pooled
region pl5 and a neuron in conv63 covers a 5 × 5 region.
In this way, the part detection maps in conv81 are from
the 5 × 5 region of the pl5. Similarly, the conv82 and



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Image

Deep
ConvNet

Roi
projection

Roi 
pooling

...
conv61

conv63

conv71

conv73

Featres covering 
different part regions

fc6 fc7

conv83

conv81

Visibility reasoning 
and classification

...

...

...

y

Features of the last 
convolutional layer 
(conv53 in VGG)

Bbox regression

...

Part detection 
map

fc8

pl5

Part scores

def81

Def83

Figure 7. Joint learning of deformation and visibility using the VGG as baseline network and the fast R-CNN for
obtaining features.

Out: 7x7x512

pl5

Kernel: 7x7, Pad: 0 
Out: 1x1x4096

Kernel: 5x5, Pad: 2 
Out: 7x7x128

Kernel: 3x3, Pad: 1 
Out: 7x7x128

Kernel: 1x1, Pad: 0 
Out: 7x7x128

fc6

conv61

conv62

conv63

Kernel: 1x1 Pad: 0 
Out: 1x1x4096

fc7

Kernel: 1x1, Pad: 0 
Out: 7x7x128

Kernel: 1x1, Pad: 0 
Out: 7x7x128

Kernel: 1x1, Pad: 0 
Out: 7x7x128

conv71

conv72

conv73

Kernel: 1x1, Pad: 0 
Out: 1x1x1

Kernel: 1x1, Pad: 0 
Out: 7x7x9

Kernel: 1x1, Pad: 0 
Out: 7x7x9

Kernel: 1x1, Pad: 0 
Out: 7x7x9

conv81

conv82

conv83

fc8

Out: 1x1x9

Out: 1x1x9

Out: 1x1x9

def81

def82

def83

Part branch

Full-body branch

Figure 8. Details on the fully connected layers (fc6, fc7, fc8), convolutional layers (conv6i, conv7i, conv8i for i = 1, 2, 3)
and deformation layers (def81, def82, def83) after the roi-pooling layer pl5. Kernel denotes the filter kernel size of
convolution. Pad denotes the padding used for convolution. Out denotes the output map size. For example, 7 × 128
denotes the 128 maps of size 7× 7 in width and height. There are 1 full-body score and 27 part scores obtained.

conv83 are, respectively, from the 3 × 3 and 1 × 1 region
of pl5. Therefore, the part detection maps conv8 1, conv82

and conv83 are scores that consider pedestrian parts of
different sizes but the same resolution. Fig. 15 shows the
visualization of the filters learned for fc8, conv81, conv82,
and conv83.

2) The fc7 layer is a fully connected layer. conv7 i for i =
1, 2, 3 is a convolutional implementation of using fully
connected layer for input feature maps of each spatial
location separately. fc7 and conv7 i do not change the
receptive field of the features.

3) The output of layers fc6 and fc7 has 4096 channels. To save
computation, the outputs of convolutional layers conv6 i and
conv7i have 128 channels.

4.1 Implementation details
The extended model is based on the Fast-RCNN framework.
At the first stage, we use the VGG net for region proposal,

which is pre-trained on ImageNet and finetuned on Caltech-
Train. At the second stage, the extended deep model intro-
duced in Section 4 is used for classifying the proposed regions
as containing pedestrians or background. The second stage is
called region classification stage.

Region proposal stage. We use the open source code re-
leased by Ren et al. [61] for obtaining candidate regions. We
change some parameters of the region proposal network. For
example, the sizes of anchors/boxes are {16×16, 32×32, 64×
64, 128×128}, and the aspect ratios are set as {1.7, 2.4, 3.1}.
During training and testing, we resize the image 640 × 480
to 1066× 800 to fit the large input image size requirement of
VGG. We use a learning rate 0.001 for the iterations [1 80000
] and 0.0001 for the iterations [80000 120000]. After non-
maximum suppression (NMS), about 2000 proposal regions
per image are retained for training the extended deep model.
In the testing stage, we keep boxes with RPN classification
score larger than 0.2 as the proposed regions for the extended



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

deep model. With the threshold being 0.2, around 13 proposal
regions per image are retained as the region proposal for
pedestrian classification at the testing stage. More proposal
regions are retained at the training stage for preserving more
training samples, fewer proposal regions are retained at the
testing stage for faster speed.

Region classification stage. The extended deep model for
classification is shown in Fig. 7 and Fig. 8. It includes the
full-body branch and the part branch. The roi-pooling layer
proposed in [25] outputs feature map of size 7 × 7. With
padding, the part score map is also 7 × 7. Denote (x, y) as
horizontal location x and vertical location y in the 7× 7 part
score map, x = {0, 1, . . . , 6}, y = {0, 1, . . . , 6}. We select 9
anchor locations of parts, i.e. (2, 1), (2, 3), (2, 5), (3, 1), (3,
3), (3, 5), (4, 1), (4, 3) and (4, 5). The visibility reasoning
layers are similar to UDN.

To train the extended deep model, we adopt two steps.
• Step 1: learn the extended deep model without visibility

reasoning. Two kinds of implementations are tried in im-
plementing the part branch. The first implementation places
Relu before the deformation layer and uses tanh as the
activation function to get the deformable part score, and
then uses the Euclidean loss for training part branch. The
other implementation does not place non-linear activation
function before the deformation layer and chooses sigmoid
as the activation function to get the part score, and then
uses the cross entropy loss for training the part branch. Both
implementations have similar results.

• Step 2: with the model parameters in Step 1 as initial point,
the extended deep model with visibility reasoning is trained.

In the training stage, layers from VGG are initialized by the
VGG16 model pre-trained on ImageNet, and the other new
layers are initialized from zero-mean Gaussian distribution.

The visibility reasoning layer is implemented by fully con-
nected layer, they can be easily implemented by convolution.
And the distance transform is used for the deformation layer,
which is also applicable for convolution. The model in this
paper can be made fully convolutional although we run it as
a classifier for each window separately using the roi-pooling.

5 EXPERIMENTAL RESULTS OF THE BASIC
DEEP MODEL

The proposed framework is evaluated on the Caltech dataset
[17] and the ETH dataset [20]. In order to save computation,
a detector using HOG+CSS and Linear SVM is utilized for
pruning candidate detection windows at both training and
testing stages. Approximately 60,000 training samples that
are not pruned by the detector are used for training the deep
model. At the testing stage, the execution time required by our
deep model is less than 10% of the execution time required
by the HOG+CSS+SVM detector, which has filtered most
samples. In the deep learning model, learning rate is fixed as
0.025 with batch size 60. Similar to [64], [33], norm penalty
is not used.

The compared approaches are VJ [72], HOG [9], Shapelet
[62], LatSVM-V1 [22], LatSVM-V2 [22], HogLbp [76],

10
−2

10
−1

10
0

10
1

.05

.10

.20

.30

.40

.50

.64

.80
1  

false positives per image

m
is

s 
ra

te

 

 
95% VJ

91% Shapelet

80% LatSvm−V1

77% ConvNet−U−MS

73% HikSvm

68% HOG

68% HogLbp

53% DN−HOG

53% DBN−Isol

51% MultiFtr+Motion

48% DBN−Mut

45% MultiSDP

39% UDN

30% ACF−Caltech+

25% LDCF

23% SCF+AlexNet

22% SpatialPooling

21% TA−CNN

18% Checkerboards

12% DeepParts

12% CompACT−Deep

12% UDN+

Figure 9. Overall results on the Caltech-Test dataset. The
original annotation is used for training our UDN and UDN+
and evaluation on the test data. In the legend, 12% for
our UDN+ model denotes the log average miss rate in
[10−2, 100]. Similarly for other approaches.

DBN-Isol [46], MultiFtr [77], MultiFtr+Motion [73], Mul-
tiResC [56], DBN-Mut [50], MultiSDP [87], LDCF [44],
SCF+AlexNet [31], Katamari [4], SpatialPooling [55], Spa-
tialPooling+ [55], SCCPriors [84], TA-CNN [69], CCF
[82], CCF+CF [82], Checkerboards [91], DeepParts [68],
CompACT-Deep [7], SDN [38], CrossTalk [14], HikSVM
[40], FPDW [15], ACF [13], RandForest [41], and ConvNet-
U-MS [64]. Existing approaches use various features, de-
formable part models and different learning approaches. The
features used include Haar (VJ), HOG (HOG, LatSvm-V2),
LBP (HogLbP), motion (MultiFtr+Motion) and geometric
constraint (MultiResC). Different part models are used in
LatSVM-V2, DBN-Isol and MultiResC. Different deep models
are used by ConvNet-U-MS, DBN-Mut, SDN, CCF, MultiSDP,
DeepParts, CompACT-Deep, SCF+AlexNet, and DN-HOG.
The UDN is our basic deep model introduced in Section 3
and the UDN+ is our extended model in Section 4.

5.1 Results of the Caltech-Test dataset

The labels and evaluation code provided by Dollár et al. online
are used for evaluation following the criteria proposed in [ 17].
As in [17], the log-average miss rate is used to summarize the
detector performance, and is computed by averaging the miss
rate at nine FPPI rates that are evenly spaced in the log-space
in the range from 10−2 to 100. In the experiments, we evaluate
the performance on the reasonable subset of the evaluated
datasets. This subset, which is the most popular portion of the
datasets, consists of pedestrians who are more than 49 pixels
in height, and whose occluded portions are less than 35%.

To evaluate on the Caltech-Test dataset, the Caltech-Train
dataset is used to train our model. The recent best performing
approaches [12], [56] on Caltech-Test also use Caltech-Train
as training data. At the training stage, there are approximately
60,000 negative samples and 4,000 positive samples from the
Caltech-Train dataset.

Fig. 9 shows the overall experimental results on the Caltech-
Test. Our UDN+ has better performance when compared with



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

10
−2

10
0

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

 

 

77 ConvNet−U−MS
47 CNN−1layer
43 CNN−2layer
39 UDN

10
−2

10
0

.20

.30

.40

.50

.64

.80
1

false positives per image
m

is
s 

ra
te

 

 

47 UDN−1Chn

42 UDN−2Chn

39 UDN

10
−2

10
0

.05

.10

.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s 
ra

te

 

 

63 LatSvm−V2
53 DN−HOG
50 UDN−HOG
47 UDN−HOGCSS
44 UDN−CNNFeat
41 UDN−DefLayer
39 UDN

(a) (b) (c)

Figure 10. Results of various designs of the deep model on the Caltech-Test dataset.

state-to-the-art methods. The basic UDN model has miss rate
39% and the extended model has miss rate 12%.

Since Caltech-Test is the largest among commonly used
datasets, we investigate different designs of deep models on
this dataset. Comparisons are shown in Figure 10.

Layer design. A one-layer CNN (CNN-1layer in Fig. 10(a))
is obtained by directly feeding the extracted features in Fig.
2 into a linear classifier. A two-layer CNN (CNN-2layer in
Fig. 10(a)) is constructed by convolving the extracted feature
maps with another convolutional layer and another pooling
layer. Adding more convolutional and pooling layers on the
top of the two-layer CNN does not improve the performance.
Both CNNs have the same input and settings as the first
convolutional layer and pooling layer of UDN, but do not have
the deformation layer or the visibility estimation layer. This
experiment shows that the usage of deformation and visibility
layers outperforms CNNs. The ConvNet-U-MS in [64], which
uses unsupervised feature learning for two-layer CNN, does
not perform well on Caltech-Test. It has an average miss rate
of 77%.

Input channel design. Fig. 10(b) shows the experimental
results of investigating the influence of input channels intro-
duced in Section 3.2. When the input data only has the first
Y-channel image, the average miss rate is 47%. The inclusion
of the second chennel of color images with a lower resolution
reduces the miss rate by 5%. Including the third channel of
edge maps reduces the miss rate by a further 3%.

Joint Learning. Fig. 10(c) shows the experimental results
on investigating different degrees of joint learning. The first
convolutional and pooling layers of UDN correspond to the
feature extraction step. Therefore, the output of the two
layers can be replaced by any other features, either manually
designed or pre-learned.
• LatSvm-V2 [22], with a miss rate of 63%, manually designs

the HOG feature, and then learns the deformation model.
Visibility reasoning is not considered.

• DN-HOG [46], with a miss rate of 53%, fixes the HOG
feature and the deformation model, and then learns the
visibility model.

• UDN-HOG, with a miss rate of 50%, fixes the HOG feature,
and then jointly learns the deformation and visibility layers
with UDN. The difference between DN-HOG and UDN-
HOG is whether deformation and visibility models are
jointly learned.

• UDN-HOGCSS, with a miss rate of 47%, fixes the
HOG+CSS feature, and jointly learns the deformation and
visibility layers with UDN. Compared with UDN-HOG, the
extra CSS feature reduces the miss rate by 3%.

• UDN-CNNFeat, with a miss rate of 44%, first learns the
feature extraction layers using CNN-1layer in Fig. 10(a)
and fixes these layers, and then jointly learns the defor-
mation and visibility. In this case, the feature extraction
is not jointly learned with the deformation and visibility.
Compared with UDN-HOGCSS, UDN-CNNFeat reduces
the miss rate by 3% by using the features learned from
CNN-1layer.

• UDN-DefLayer, with a miss rate of 41%, jointly learns
features and deformation. Visibility reasoning is not used.

• UDN jointly learns feature, deformation and visibility. Its
miss rate is 5% lower than UDN-CNNFeat. Therefore,
the interaction between deformation, visibility, and feature
learning clearly improves the detection ability of the model.

5.2 Results of the ETH dataset

For a fair comparison on the ETH dataset, we follow the train-
ing setting commonly adopted by state-of-the-art approaches
(including the best performing approaches [46], [22], [64] on
ETH); that is, using the INRIA training dataset in [9] to train
UDN. There are approximately 60, 000 negative samples and
2, 000 positive samples from the INRIA Training dataset, after
the pruning of the HOG+CSS+SVM detector. Fig. 11 shows
the experimental results on ETH. It can be seen that the basic
UDN model [47] is still among the top ranking approaches
on this dataset. Many studies (e.g., [33]) have found that deep
models favor large-scale training data. The INRIA training
set has fewer positive training samples than Caltech-Train.
Therefore, the difference of miss rates between UDN and
existing approaches is smaller than that on Caltech-Test.

Area under curve [64] is another measurement commonly
used for evaluating the performance of pedestrian detection.
Fig. 12 shows the average miss rate computed from AUC,
which indicates that UDN also outperforms many sate-of-the-
art methods under AUC.

6 EXPERIMENTAL RESULTS FOR THE EX-
TENDED DEEP MODEL ON CALTECH

In this section, we evaluate the proposed extended model
introduced in Section 4 on the Caltech dataset. We evaluate



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

10−2 10−1 100 101

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

90% VJ
77% LatSvm−V1
72% HikSvm
64% HOG
61% MultiFtr+CSS
60% FPDW
60% MultiFtr+Motion
60% MultiFtr
55% HogLbp
51% ACF
51% LatSvm−V2
48% MultiSDP
47% DBN−Isol
45% UDN
45% RandForest
45% LDCF
41% DBN−Mut
41% SDN
37% SpatialPooling
35% TA−CNN

Figure 11. Experimental results on the ETH dataset.

92 
87 

73 
71 

62 
62 

58 
46 

42 
42 

30 
23 

18 
17 
15 
15 
13 

9 
8 
8 

VJ 
Shapelet 

LatSvm-V1 
ConvNet-U-MS 

Hoglbp 
HikSvm 

HOG 
CrossTalk 

MultiFtr+Motion 
DN-HOG 

UDN 
ACF-Caltech+ 
SCF+AlexNet 

LDCF 
SpatialPooling+ 

TA-CNN 
Checkerboards 

DeepParts 
CompACT-Deep 

UDN+ 

84 
67 

59 
51 
49 
48 
47 
47 
44 
41 
39 
38 
37 
34 
34 
33 
31 
31 

27 
26 

VJ 
LatSvm-V1 

HikSvm 
HOG 

MultiFtr+CSS 
MultiFtr+Motion 

MultiFtr 
FPDW 

Hoglbp 
LatSvm-V2 

ACF 
MultiSDP 
DBN-Isol 

UDN 
RandForest 

LDCF 
DBN-Mut 

SDN 
SpatialPooling 

TA-CNN 

Figure 12. Comparisons of area under curve curve (AUC)
on Caltech-Test (left) and ETH (right).

the performance on the reasonable subset of the evaluated
datasets, which is for pedestrians over 50 pixels tall, with
no or partial occlusion. In section 4 we use the training data
of Caltech provided by Dollár et al. [17]. As pointed out by
Zhang et al. in [90] , the label in [17] is noisy and influences
both training and testing accuracy. The annotations are refined
in [90]. In this section, we use the new annotations provided
in [90] for both learning the model using the Caltch-Train and
evaluation using the Caltech-Test.

After the region proposal step, the basic model takes about
0.1 seconds per image using Intel-i3 (4 CPUs) with 3.3GHz,
and the extended model takes about 0.28 seconds per image
using a single Titan X GPU. The region proposal network for
region proposal takes about 0.2 seconds per image.

Fig. 13 shows the experimental comparison of the
state of the art approaches and our final model. The
compared approaches include RotatedFiltersNew10x VGG
[90], CompACT-Deep [7], DeepParts [68], Checkerboards
[91], TA-CNN [69], SCCPriors [84], SpatialPooling+ [55],
SCF+AlexNet [31], Katamari [4], CCF [82], CCF+CF [82],
LDCF [44], DBN-Isol [46], DBN-Mut [50], MultiSDP [87],
HOG [9], and VJ [72]. The average miss rate is 10% in [90].
In these approaches, our result in Fig. 13 is based on single
CNN model, while combination of hand crafted features and
CNN features are used in RotatedFiltersNew10x VGG [90],
CompACT-Deep [7], and DeepParts [68]. Fig. 13 provides
log-average miss rate in [10−2, 100] and [10−4, 100]. In the
other experiments, we only provide the log-average miss rate
in [10−2, 100].

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

.05

.10

.20

.30

.40

.50

.64

.80
.100

false positives per image

m
is

s 
ra

te

 

 
92.67(95.81)% VJ
64.68(78.06)% HOG
51.46(66.65)% DBN−Mut
50.51(65.25)% DBN−Isol
42.28(57.74)% MultiSDP
33.26(49.85)% UDN
23.72(42.64)% CCF
23.72(38.27)% LDCF
22.34(41.99)% CCF+CF
22.18(34.56)% Katamari
21.59(34.61)% SCF+AlexNet
21.56(35.96)% SpatialPooling+
19.24(34.03)% SCCPriors
18.75(34.26)% TA−CNN
15.81(28.57)% Checkerboards
13.36(25.55)% VGG16(our baseline)
12.90(25.15)% DeepParts
10.00(20.77)% RotatedFilters−New10x VGG
9.15(18.84)% CompACT−Deep
8.57(17.41)% UDN+

Figure 13. Comparison of our extended model with other
state-of-the-art methods on the Caltech-Test dataset us-
ing the new labels provided in [90]. The labels in [90]
are used for learning our UDN+ model. In the legend,
8.57% for our model denotes the log average miss rate in
[10−2, 100], 17.41% for our model denotes the log average
miss rate in [10−4, 100]. Similarly for other approaches.

6.1 Experimental results on the components in the
extended model

Fig. 14(a) shows the experimental results for deformation
and visibility learning. The baseline VGG16 in Fig. 14(a)
has average miss rate 13.36%. With the part branch, i.e. the
VGG16 + Def in Fig. 14(a), the average miss rate is reduced
to 11.91%. When the visibility reasoning layers are added,
the model VGG16 + Def + Vis in Fig. 14(a) achieves 11.09%
average miss rate.

We further examine the effectiveness of part branch and
the deformation layer separately. The baseline VGG16 in Fig.
14(a) without the part branch has average miss rate 13.36%.
The VGG with the part branch but without deformation layer,
i.e. the VGG16 + no Def in Fig. 14(a), has average miss
rate 12.86%. With deformation layer, the average miss rate is
11.91%, which is the VGG16 + Def in Fig. 14(a). The part
branch without deformation reduces the absolute average miss
rate by 0.5%, and the deformation layer further reduces the
absolute average miss rate by 0.95%.

Our model without à trous has average miss rate 11.05%
in Fig. 14(a). Based on the same setting, the model with à
trous for increasing the resolution of feature has average miss
rate 11.65%. The increase of resolution by à trous does not
improve the detection accuracy for our model.

Based on the joint model, the experimental results investi-
gating influence from the number of parts for each branch
are shown in Fig. 14(b). It can be seen that the use of 9
parts is better than 4 or 16 parts. We use 9 parts as our
final implementation. Since the model has 3 branches and each
branch has 9 parts, there are 27 parts in all.

Higher resolution and hard negative mining for better
accuracy. Based on VGG, our extended model has average
miss rate 11.09%, which is Ours-Ext in Fig. 14(c). Based on
this model, two commonly used approaches can be used for



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

10−3 10−2 10−1 100

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

13.36% VGG16
12.86% VGG16 + no Def
11.91% VGG16 + Def
11.09% VGG16 + Def + Vis

10-3 10-2 10-1 100

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

11.45% 4-part
11.30% 16-part
11.09% 9-part

10−3 10−2 10−1 100

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

11.09% Ours−Ext
9.70% Ours−Ext + Rm pool4
8.57% Ours−Ext + Rm pool4 + HNM

(a) (b) (c)

Figure 14. Experimental results on the components in our framework. The baseline is the VGG16 model, VGG16 +
no Def denotes the model with part branch without deformation layer. VGG16 + Def denotes the model with part
branch and deformation layer. VGG16 + Def + Vis denotes the model with part branch, deformation layer and visibility
reasoning. n-part in (b) denotes the VGG16 + Def + Vis model in (a) with n parts for each branch, n = 4, 9, 16. Ours-Ext
in (c) corresponds to VGG16 + Def + Vis in (a) and 9-part in (b). Ours-Ext + Rm pool4 denotes the model removing the
max pooling at pool4 in VGG to increase the resolution of features. Ours-Ext + Rm pool4 + HNM denotes the model
the use of hard negative mining on the model Ours-Ext + Rm pool4.

further improving accuracy. As shown in [17], many people
are lower than 80 pixels. VGG16 stride is large for pedestrians
with 50 pixels in height. Thus we remove pool4 for increasing
the resolution of the feature maps in conv53. In this way, the
average miss rate is reduced to 9.7%, which is the Ours-Ext
+ Rm pool4 in Fig. 14(b). In order to remove common false
positives, i.e. trees and poles, we fill each mini-batch with
hard negatives in the training stage. The hard negatives can
be obtained by using the detector on training set and selecting
false positives with high score. On top of the the model Ours-
Ext + Rm pool4, the use of hard negative mining, i.e. Ours-Ext
+ Rm pool4 + HNM as shown in Fig. 14(b), has average miss
rate 8.57%.

6.2 Visualization of the learned model parameters

Fig. 15 shows the visualization of the learned filters for full
body and body parts using the DeepVisualization in [1]. The
visualized filter for the full-body branch in Fig. 15(a) covers
the full body of a pedestrian. It is not good for representing
the legs of the pedestrian. The filters for the part branch in
Fig. 15 (b)-(d) are stitched for better visualization quality. It
can be seen that the filters for parts provide more details of
pedestrians. Fig. 16 shows the learned deformation map.

Several detection results of DeepParts [68], CompACT-
Deep [7] and our framework are shown in Fig. 17(a). Com-
pared with other approaches, our approach has less false
positives and has more accurate bounding box in localizing
the pedestrian, especially in the regions of crowd. We can use
fewer detection boxes than others to achieve the same miss
rate.

We also show some false positives and missing pedestrians
of our framework in Fig. 17 (b). Many false positives appear

on the cars. These can be removed with the labels of cars, con-
textual information, and more negatives samples of cars. Some
missing pedestrians have high occlusion or low resolution.

7 CONCLUSION

This paper proposes a unified deep model that jointly learns
four components – feature extraction, deformation handling,
occlusion handling and classification – for pedestrian detec-
tion. Through interaction among these interdependent com-
ponents, joint learning achieves detection accuracy improve-
ment on benchmark pedestrian detection datasets. Detailed
experimental comparisons clearly show that the proposed new
model can maximize the strength of each component when
all the components cooperate with each other. We enrich the
deep model by introducing the deformation layer, which has
great flexibility to incorporate various deformation handling
approaches. We expect even larger improvement by training
our UDN on much larger-scale training sets in the future work.

Acknowledgment: This work is supported by the General
Research Fund sponsored by the Research Grants Council
of Hong Kong (Project No. CUHK 417110, CUHK 417011,
CUHK 429412, CUHK 1420611, CUHK 14206114, CUHK
14205615) and National Natural Science Foundation of China
(Project No. 61005057).

REFERENCES
[1] Deepvisualization. DeepVisualization on

https://github.com/happynear/DeepVisualization. 11, 12
[2] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg. Part-based feature

synthesis for human detection. In ECCV, 2010. 2
[3] O. Barinova, V. Lempitsky, and P. Kohli. On detection of multiple object

instances using hough transforms. In CVPR, 2010. 1, 2
[4] R. Benenson, M. Omran, J. Hosang, and B. Schiele. Ten years of

pedestrian detection, what have we learned? In ECCV Workshop, pages
613–627. Springer, 2014. 2, 8, 10

https://github.com/happynear/DeepVisualization


IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

(a) 
 Full body 

(b) 
Large parts 

(c)  
Median sized parts  

(d)  
Small parts 

Figure 15. The filters for full-body branch (a) and part branch (b)(c)(d) visualized using the code provided on [1]. The
body parts in (b)(c)(d) are visualized by stitching them at different anchor locations. More details can be found in
Section 4.

Figure 16. Visualization of the learned defomation layer parameters for large parts (left), median-sized parts (middle)
and small parts (right).

[5] Y. Bengio. Learning deep architectures for AI. Foundations and Trends
in Machine Learning, 2(1):1–127, 2009. 2

[6] L. Bourdev and J. Malik. Poselets: body part detectors trained using 3D
human pose annotations. In ICCV, 2009. 2

[7] Z. Cai, M. Saberian, and N. Vasconcelos. Learning complexity-aware
cascades for deep pedestrian detection. In ICCV, 2015. 8, 10, 11

[8] X. Chen and A. Yuille. Articulated pose estimation by a graphical model
with image dependent pairwise relations. In NIPS, 2014. 2

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In CVPR, 2005. 1, 2, 8, 9, 10

[10] C. Desai and D. Ramanan. Detecting actions, poses, and objects with
relational phraselets. In ECCV, 2012. 2

[11] M. Dikmen, D. Hoiem, and T. S. Huang. A data-driven method for
feature transformation. In CVPR, 2012. 2

[12] Y. Ding and J. Xiao. Contextual boost for pedestrian detection. In
CVPR, 2012. 1, 8

[13] P. Dollár, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids
for object detection. IEEE Trans. PAMI, 36(8):1532–1545, 2014. 2, 8

[14] P. Dollár, R. Appel, and W. Kienzle. Crosstalk cascades for frame-rate
pedestrian detection. In ECCV, 2012. 1, 2, 8

[15] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in
the west. In BMVC, 2010. 8

[16] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features.
In BMVC, 2009. 1, 2

[17] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: an
evaluation of the state of the art. IEEE Trans. PAMI, 34(4):743 – 761,
2012. 1, 2, 8, 10, 11

[18] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila. Multi-
cue pedestrian classification with partial occlusion handling. In CVPR,
2010. 1, 2

[19] D. Erhan, Y. Bengio, A.Courville, and P. Vincent. Visualizing higher-
layer features of deep networks. Technical report, University of Mon-
treal, 2009. 4

[20] A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile
scene analysis. In ICCV, 2007. 2, 8

[21] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical
features for scene labeling. IEEE Trans. PAMI, 30:1915–1929, 2013. 2

[22] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ramanan. Object
detection with discriminatively trained part based models. IEEE Trans.
PAMI, 32:1627–1645, 2010. 1, 2, 4, 5, 8, 9

[23] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object
recognition. IJCV, 61:55–79, 2005. 2, 5

[24] T. Gao, B. Packer, and D. Koller. A segmentation-aware object detection
model with occlusion handling. In CVPR, 2011. 1

[25] R. Girshick. Fast r-cnn. In CVPR, 2015. 6, 8
[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In
CVPR, 2014. 1, 6

[27] R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models
are convolutional neural networks. In CVPR, 2015. 2

[28] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527–1554, 2006. 2

[29] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504 – 507, July 2006. 2

[30] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in perspective.
In CVPR, 2006. 2

[31] J. Hosang, M. Omran, R. Benenson, and B. Schiele. Taking a deeper
look at pedestrians. In CVPR, pages 4073–4082, 2015. 2, 8, 10

[32] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the
best multi-stage architecture for object recognition? In CVPR, 2009. 2

[33] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012. 2, 3, 8, 9

[34] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado,
J. Dean, and A. Y. Ng. Building high-level features using large scale
unsupervised learning. In ICML, 2012. 2, 4

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. 2, 3

[36] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection in crowded
scenes. In CVPR, 2005. 2

[37] D. Lowe. Distinctive image features from scale-invarian keypoints.
IJCV, 60(2):91–110, 2004. 1

[38] P. Luo, Y. Tian, X. Wang, and X. Tang. Switchable deep network for
pedestrian detection. In CVPR, 2014. 2, 8



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

0.97392

0.81445

0.97221 0.93295

(a) some missing pedestrians (red boxes) and high-score false positives (yellow boxes).

False positive Missing detection Ignored annotationTrue positive
(b) comparison to others state-of-the-art methods.

Figure 17. Some missing pedestrians and high-score false positives (a) and the detection results compared with other
state-of-the-art methods (b). In (b), the columns from left to right are TA-CNN, DeepParts, CompACT-Deep and ours.

[39] P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep
learning. In CVPR, 2012. 2

[40] S. Maji, A. C. Berg, and J. Malik. Classification using intersection
kernel support vector machines is efficient. In CVPR, 2008. 1, 2, 8

[41] J. Marın, D. Vázquez, A. M. López, J. Amores, and B. Leibe. Random
forests of local experts for pedestrian detection. In CVPR, 2013. 8

[42] M. Mathias, R. Benenson, R. Timofte, and L. Van Gool. Handling
occlusions with franken-classifiers. In ICCV, 2013. 1, 2

[43] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object class detection
with a generative model. In CVPR, 2006. 2

[44] W. Nam, P. Dollár, and J. H. Han. Local decorrelation for improved
pedestrian detection. In Advances in Neural Information Processing
Systems, pages 424–432, 2014. 8, 10

[45] M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolutional restricted
boltzmann machines for shift-invariant feature learning. In CVPR, 2009.
2

[46] W. Ouyang and X. Wang. A discriminative deep model for pedestrian
detection with occlusion handling. In CVPR, 2012. 1, 2, 5, 6, 8, 9, 10

[47] W. Ouyang and X. Wang. Joint deep learning for pedestrian detection.
In ICCV, 2013. 2, 9

[48] W. Ouyang and X. Wang. Single-pedestrian detection aided by multi-
pedestrian detection. In CVPR, 2013. 2

[49] W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang,
Z. Wang, C.-C. Loy, et al. Deepid-net: Deformable deep convolutional
neural networks for object detection. In CVPR, 2015. 1, 2

[50] W. Ouyang, X. Zeng, and X. Wang. Modeling mutual visibility
relationship in pedestrian detection. In CVPR, 2013. 1, 8, 10

[51] W. Ouyang, X. Zeng, and X. Wang. Single-pedestrian detection aided
by two-pedestrian detection. IEEE Trans. PAMI, 37(9):1875–1889, Sept.
2015. 2

[52] W. Ouyang, X. Zeng, and X. Wang. Learning mutual visibility relation-
ship for pedestrian detection with a deep model. IJCV, 120(1):14–27,
2016. 2

[53] W. Ouyang, X. Zeng, and X. Wang. Partial occlusion handling in
pedestrian detection with a deep model. IEEE Trans. Circuits Syst.
Video Technol., 26(11):2123–2137, Nov 2016. 2

[54] W. Ouyang, X. Zeng, X. Wang, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang,
Z. Wang, H. Li, K. Wang, J. Yan, C.-C. Loy, and X. Tang. Deepid-net:
Deformable deep convolutional neural networks for object detection.
IEEE Trans. PAMI, page accepted, 2016. 1

[55] S. Paisitkriangkrai, C. Shen, and A. van den Hengel. Pedestrian detection
with spatially pooled features and structured ensemble learning. IEEE
Trans. PAMI, 38(6):1243–1257, 2016. 8, 10

[56] D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object
detection. In ECCV, 2010. 2, 8

[57] D. Park, C. L. Zitnick, D. Ramanan, and P. Dollár. Exploring weak
stabilization for motion feature extraction. In CVPR, 2013. 2

[58] H. Poon and P. Domingos. Sum-product networks: A new deep
architecture. In UAI, 2011. 2

[59] D. Ramanan. Learning to parse images of articulated bodies. In NIPS,
2007. 4

[60] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Lecun. Unsupervised
learning of invariant feature hierarchies with applications to object
recognition. In CVPR, 2007. 2

[61] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. NIPS, 2015. 6, 7

[62] P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet
features. In CVPR, 2007. 8

[63] W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis. Human detection
using partial least squares analysis. In ICCV, 2009. 2



IEEE TRANSACTIONS PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[64] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun. Pedestrian
detection with unsupervised and multi-stage feature learning. In CVPR,
2013. 2, 8, 9

[65] V. D. Shet, J. Neumann, V. Ramesh, and L. S. Davis. Bilattice-based
logical reasoning for human detection. In CVPR, 2007. 2

[66] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
1, 2, 6

[67] Y. Sun, X. Wang, and X. Tang. Hybrid deep learning for computing
face similarities. In ICCV, 2013. 2

[68] Y. Tian, P. Luo, X. Wang, and X. Tang. Deep learning strong parts for
pedestrian detection. In ICCV, 2015. 2, 8, 10, 11

[69] Y. Tian, P. Luo, X. Wang, and X. Tang. Pedestrian detection aided by
deep learning semantic tasks. In CVPR, 2015. 2, 8, 10

[70] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification
on riemannian manifolds. IEEE Trans. PAMI, 30(10):1713–1727, Oct.
2008. 1, 2

[71] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels
for object detection. In ICCV, 2009. 2

[72] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns
of motion and appearance. IJCV, 63(2):153–161, 2005. 1, 2, 8, 10

[73] S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and
insights for pedestrian detection. In CVPR, 2010. 2, 8

[74] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully
convolutional networks. In ICCV, 2015. 2

[75] L. Wang, W. Ouyang, X. Wang, and H. Lu. Stct: Sequentially training
convolutional networks for visual tracking. In CVPR, 2016. 2

[76] X. Wang, X. Han, and S. Yan. An hog-lbp human detector with partial
occlusion handling. In CVPR, 2009. 1, 2, 8

[77] C. Wojek and B. Schiele. A performance evaluation of single and multi-
feature people detection. In DAGM, 2008. 8

[78] B. Wu and R. Nevatia. Detection of multiple, partially occluded humans
in a single image by bayesian combination of edgelet part detectors. In
ICCV, 2005. 2

[79] T. Wu and S. Zhu. A numeric study of the bottom-up and top-down
inference processes in and-or graphs. IJCV, 93(2):226–252, Jun. 2011.
2

[80] J. Yan, Z. Lei, L. Wen, and S. Z. Li. The fastest deformable part model
for object detection. In CVPR, 2014. 2

[81] J. Yan, Y. Yu, X. Zhu, Z. Lei, and S. Z. Li. Object detection by labeling
superpixels. In CVPR, 2015. 1, 2

[82] B. Yang, J. Yan, Z. Lei, and S. Z. Li. Convolutional channel features.
In ICCV, 2015. 1, 2, 8, 10

[83] Y. Yang and D. Ramanan. Articulated pose estimation with flexible
mixtures-of-parts. In CVPR, 2011. 2

[84] Y. Yang, Z. Wang, and F. Wu. Exploring prior knowledge for pedestrian
detection. In BMVC, 2015. 8, 10

[85] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
neural networks. arXiv preprint arXiv:1311.2901, 2013. 2

[86] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional
networks for mid and high level feature learning. In ICCV, 2011. 2

[87] X. Zeng, W. Ouyang, and X. Wang. Multi-stage contextual deep learning
for pedestrian detection. In ICCV, 2013. 2, 8, 10

[88] X. Zeng, W. Ouyang, B. Yang, J. Yan, and X. Wang. Gated bi-directional
cnn for object detection. In ECCV, 2016. 1

[89] S. Zhang, C. Bauckhage, and A. Cremers. Informed haar-like features
improve pedestrian detection. In CVPR, pages 947–954, 2014. 2

[90] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele.
How far are we from solving pedestrian detection? arXiv preprint
arXiv:1602.01237, 2016. 10

[91] S. Zhang, R. Benenson, and B. Schiele. Filtered channel features for
pedestrian detection. In CVPR, 2015. 2, 8, 10

[92] R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detection by multi-
context deep learning. In CVPR, 2015. 2

[93] L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical
structural learning for object detection. In CVPR, 2010. 1, 2

Wanli Ouyang received the PhD degree in the
Department of Electronic Engineering, The Chi-
nese University of Hong Kong, where he is now
a Research Assistant Professor. His research
interests include image processing, computer
vision and pattern recognition.

Hui Zhou received the bachelor degree at uni-
versity of science and electronic technology of
china in 2015. He is currently a Research Assis-
tant in the Department of Electronic Engineering
at The Chinese University of Hong Kong. His
research interests include computer vision and
machine learning.

Xiaogang Wang received the PhD degree from
the Computer Science and Artificial Intelligence
Laboratory at the Massachusetts Institute of
Technology in 2009. He is currently an Asso-
ciate Professor in the Department of Electronic
Engineering at The Chinese University of Hong
Kong. His research interests include computer
vision and machine learning.

Hongsheng Li received the masters and doc-
torate degrees in computer science from Lehigh
University, Pennsylvania, in 2010 and 2012, re-
spectively. He is an associate professor in the
School of Electronic Engineering at University
of Electronic Science and Technology of China.
His research interests include computer vision,
medical image analysis, and machine learning.

Junjie Yan received the PhD degree in 2015
from National Laboratory of Pattern Recognition,
Chinese Academy of Sciences. His research fo-
cus on object detection, face analysis, and deep
learning. Since 2016, he is a principal engineer
at SenseTime Group Limited and leads the R&D
in video surveillance.

Quanquan Li received his bachelor degree in
information engineering from The Chinese Uni-
versity of Hong Kong in 2015. He joined Sense-
Time as a researcher in 2015. He has worked
on object detection, particularly on pedestrian
detection and car detection under surveillance
scenes.


