
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 1

The Segmented Gray-Code Kernels for Fast Pattern
Matching

Wanli Ouyang*, Member, IEEE, Renqi Zhang, Student Member, IEEE, and Wai-Kuen Cham, Senior
Member, IEEE

Abstract—The Gray-Code Kernels (GCK) family which has
Walsh Hadamard Transform (WHT) on sliding windows as a
member is a family of kernels that can perform image analysis
efficiently using a fast algorithm such as the GCK algorithm.
The GCK has been successfully used for pattern matching. In
this paper, we propose the G4-GCK algorithm that is more
efficient than the previous algorithm in computing GCK. The
G4-GCK algorithm requires 4 additions per pixel for 3 basis
vectors independent of transform size and dimension. Based on
the G4-GCK algorithm, we then propose the segmented GCK. By
segmenting input data into Ls parts, the SegGCK requires only
4 additions per pixel for 3Ls basis vectors. Experimental results
show that the proposed algorithm can significantly accelerate the
full-search equivalent pattern matching process and outperforms
state-of-the-art methods.

Index Terms—Fast algorithm, Walsh Hadamard Transform,
pattern matching, template matching, feature extraction, block
matching.

I. INTRODUCTION

PATTERN matching, also called template matching, aims
at locating a given pattern or template in a given image

as shown in Fig. 1. Pattern matching has found applications
in signal processing, computer vision, image and video pro-
cessing. It has been applied for quality control [1], image
based rendering [2], image compression [3], super-resolution
[4], texture synthesis [5], block matching in motion estimation
[6], [7], image denoising [8], [9], tracking [10], tone mapping
[11] and image matching [12].

Pattern matching requires intensive computation because the
search space is usually huge. Hence, many fast algorithms
have been proposed to relieve this computational burden.
The algorithms can be grouped into full search nonequivalent
algorithms and full search equivalent algorithms. Full search
nonequivalent algorithms achieve computational savings by
reducing the search space [13], [14], [15] or by approximating
patterns and windows using polynomials [16], [17], [18], [19]
or linear combination of features [20].

On the other hand, full search equivalent algorithms accel-
erate the pattern matching process and, at the same time, yield
exactly the same result as that of the full search (FS). The FFT-
based approach, which has been implemented in OpenCV [21],

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

W. Ouyang, R. Zhang and W.K. Cham are with the Chinese
University of Hong Kong, China. e-mail: wlouyang@ee.cuhk.edu.hk;
wkcham@ee.cuhk.edu.hk.

Manuscript received Dec. 17, 2011; revised Apr. 29, 2012.

is FS equivalent. The FS equivalent algorithms in [22], [23],
[24], [25], [26], [27] construct rejection schemes which reject
a large portion of mismatched candidates in computationally
efficient ways and save the complex computation originally
required by the FS for these rejected candidates. FS equivalent
algorithms can be modified to FS nonequivalent algorithms.
For example, the novel FS equivalent algorithms in [23],
[24] have been modified to FS nonequivalent algorithms and
applied for block matching in motion estimation [6], [7].

A. Pattern Matching Using Transformation

Suppose a template/pattern is to be sought in a given
image as shown in Fig. 1. The template/pattern will be
compared with candidate windows of similar size in the
image. Consider the 1D pattern matching case, we represent
the template/pattern as vector �x

(N)
t having length N and

represent the jth candidate window as �x
(N,j)
w having length

N and j = 0, 1, . . . ,W − 1. For example, if a pattern
having length N = 16 is sought in a vector having length
256, we have W = 256 − 16 + 1 = 241. In order to
compare �x

(N)
t with �x

(N,j)
w , we can compute the distance

between �x
(N)
t and �x

(N,j)
w , which is denoted by d(�x

(N)
t , �x

(N,j)
w)

and used for measuring the dissimilarity between �x
(N)
t and

�x
(N,j)
w . The distance d(�x

(N)
t , �x

(N,j)
w) should increase as the

dissimilarity between �x
(N)
t and �x

(N,j)
w increases. If T is the

threshold that discriminates between matched and mismatched
candidates, then �x

(N,j)
w is considered to match �x

(N)
t when

d(�x
(N)
t , �x

(N,j)
w) < T . In this paper, the distance between �x

(N)
t

and �x
(N,j)
w is measured by ||�x(N)

t − �x
(N,j)
w ||2 which is also

called the sum of squared differences (SSD) between �x
(N)
t and

�x
(N,j)
w . As pointed out in [23], although there are arguments

against the SSD as a dissimilarity measure for images, it is
still commonly used due to its simplicity. Discussion on the
SSD as a dissimilarity metric can be found in [28], [29], [30].

The transformation that projects a vector �x(N) ∈
R

N onto a linear subspace spanned by U basis vectors

.

Image

Pattern

Candidate
window

Matched
window

.

Fig. 1. Pattern matching in image ‘couple’

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 2

TABLE I
TRANSFORM DOMAIN PATTERN MATCHING

Overall procedure:

Initially, setcan contains all candidate windows �x(N,j)
w ;

Rejection Step: For u = 1 to NMaxu:{
For �x(N,j)

w in setcan: {Step a.1; Step a.2;}
}
FS-Step: The remaining candidate windows in setcan undergo FS.

Step a.1: �y(u)
t = V(u×N)�x

(N)
t ; �y(u,j)

w = V(u×N)�x
(N,j)
w .

Step a.2: If ||�y(u)
t − �y

(u,j)
w ||2 > T , then �x

(N,j)
w is removed from

setcan.

�v(N,0), . . . �v(N,U−1) can be represented as follows:

�y(U) = V(U×N)�x(N) = [�v(N,0) . . . �v(N,U−1)]T�x(N), (1)

where ·T is matrix transposition, vector �x(N) of length N is the
input window, vector �y(U) of length U is the projection value
vector, the U elements in vector �y(U) are projection values and
V(U×N) is a U ×N matrix that contains U orthogonal basis
vectors �v(N,i) of length N for i = 0, . . . , U−1. When U = N ,
we denote V(U×N) as V(N). In [23], [31], the transformation
is called the projection. Basis vectors are called projection
kernels in [23] and called filter kernels in [24].

The following inequality is proved in [23] when the u basis
vectors in V(u×N) are orthonormal:

||�x(N)
t − �x(N,j)

w ||2≥||V(u×N)�x
(N)
t −V(u×N)�x(N,j)

w ||2
= ||�y(u)

t − �y(u,j)
w ||2,

where �y
(u)
t = V(u×N)�x

(N)
t , �y(u,j)

w = V(u×N)�x(N,j)
w .

(2)

If ||�y(u)
t −�y

(u,j)
w ||2 > T , then we have ||�x(N)

t −�x
(N,j)
w ||2 > T

from (2), and so we can safely prune candidate window
�x
(N,j)
w from setcan. In this way, ||�y(u)

t − �y
(u,j)
w ||2 > T is

a sufficient condition for rejecting candidate window �x
(N,j)
w .

Denote the set of candidates as setcan, which initially contains
all candidates. For each iteration of u, where u increases
from 1, �x(N)

t and �x
(N,j)
w are projected onto transform domain

using V(u×N) and the rejection condition is checked for
the remaining candidates in setcan. Finally, after NMaxu

iterations, the remaining candidate windows in setcan undergo
FS for finding out the matched windows. This procedure is
summarized in Table I. Such a pattern matching approach is FS
equivalent. The u basis vectors in V(u×N) are selected from
the U orthonormal vectors �v(N,0) . . . �v(N,U−1) in V(U×N).

There are two possible ends in pattern matching: 1) detect
all candidate windows having d(�x

(N)
t , �x

(N,j)
w) < T , for a given

threshold T ; 2) find the window that leads to the minimum
value of d(�x

(N)
t , �x

(N,j)
w) among all candidate windows. The

procedure given in Table I can be modified to find the window
that has the minimum ||�x(N)

t −�x
(N,j)
w ||pp using the approaches

proposed in [32], [23] and [33]. Take the approach in [23] as
an example. The threshold T can be adapted in each loop of
u based on the minimum lower bound found in the uth loop.

The main advantage of using a transformation is that
||V(u×N)�x

(N)
t − V(u×N)�x

(N,j)
w ||2 can be computed more

efficiently than ||�x(N)
t − �x

(N,j)
w ||2 and a small number of

projection values can eliminate a large number of mismatched
windows. According to [23], pattern matching using Walsh
Hadamard Transform (WHT) as the transform is almost two

orders of magnitude faster than the FS. The other advantages
are:

• Transform domain pattern matching is FS-equivalent.
• It can be modified to FS nonequivalent algorithms, e.g.

in [6], [7].
• As shown in [23], it can deal with illumination effect

and multi-scale pattern matching. This property is used
in [12].

• The new transforms and algorithms developed can be
used as a feature extraction approach. WHT coefficients
are used as features for further analysis in tracking [10]
and wide-baseline image matching [12].

Because of these advantages, transform domain pattern match-
ing has found application in block matching in motion estima-
tion for video coding [6], [7], tracking [10], feature point based
image matching [12], texture synthesis [34] and augmented
reality [35].

Unlike the FFT approach, transform domain pattern match-
ing does not obtain exact SSD results for all candidates, which
might be required in some applications. Transform domain
pattern matching only finds the k-minimum SSD results or
the SSD results below threshold T using the FS-Step in Table
I. More comparison of WHT and FFT is detailed in [23].

As analyzed in [23], the computational efficiency of trans-
form domain pattern matching is dependent on two factors: 1)
the cost of computing transformation for Step a.1 in Table I; 2)
the ability of the rejection condition ||�y(u)

t −�y
(u,j)
w ||2 > T for

Step a.2 in rejecting mismatched windows and thus saving the
computation required afterwards, which is determined by the
energy packing ability of the transform. The energy packing
ability of a transform corresponds to its ability to compact the
energy of input data, i.e. the ability in using small u to obtain
large ||�y(u)

t − �y
(u,j)
w ||2. The larger is ||�y(u)

t − �y
(u,j)
w ||2, the

more powerful is the rejection condition ||�y(u)
t −�y

(u,j)
w ||2 > T

in pruning mismatched windows. In summary, the transform
should be computationally efficient in packing energy.

Hel-Or and Hel-Or found in [23] that WHT is efficient for
transform domain pattern matching. Their algorithm requires
2N − 2 additions for obtaining all WHT projection values
in each window of size N . The Gray-Code Kernel (GCK)
algorithm proposed in [24] requires a similar number of
additions as [23] when all projection values are computed and
requires fewer number of additions when only a small number
of projection values are computed. Recently, we proposed a
faster algorithm for computing WHT in [25].

Meanwhile, new families of transforms that can be effi-
ciently computed by fast algorithms were also proposed. The
GCK [24], which has WHT on sliding windows as a member,
is a family of transforms that can be computed efficiently by
the GCK algorithm. The generalized GCK [36], which is a
superset of GCK, can be computed efficiently by the approach
in [36].

B. Overview

In this paper, we shall first develop a new algorithm for
computing GCK, which requires 4/3 additions per datum per
basis vector independent of transform size and dimension. This

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 3

 Dyadic orderSequency orderTi),8(m
0
1
2
3
4
5
6
7

Fig. 2. Order-8 WHT basis vectors in sequency order and dyadic order. White
represents the value +1 and grey represents the value −1. Normalization factor
of basis vectors is skipped.

algorithm is called G4-GCK algorithm. Limited by WHT or
GCK, fast algorithms such as the GCK algorithm, our previous
algorithm in [25] and the new G4-GCK algorithm require more
than one addition for one basis vector. We then develop a
new Segmented GCK (SegGCK) that can be computed more
efficient than existing algorithms for WHT and GCK. By
segmenting input data into Ls parts, the proposed fast SegGCK
algorithm requires 4/(3Ls) addition(s) per datum per basis
vector. For example, when Ls is 8, the SegGCK requires
only 1/6 addition per datum per basis vector. As shown by
experimental results, pattern matching can be significantly
accelerated by performing the transformation more efficiently.

The rest of the paper is organized as follows. Section II
introduces WHT and GCK. Section III illustrates the proposed
G4-GCK algorithm. Section IV extends the algorithm to high
dimensional GCK. Section V introduces the SegGCK and
its fast algorithm. Section VI gives the experimental results.
Finally, Section VII presents the conclusions.

II. THE WHT AND GCK

A. The WHT

1D order-NM WHT transforms NM numbers into NM

projection values. Let M(NM) be an order-NM WHT matrix
and:

M(NM) =[�m(NM,0), . . . �m(NM,iM), . . . �m(NM,NM−1)]T

= 1√
2

[
M(NM/2) M(NM/2)

M(NM/2) −M(NM/2)

]
, (3)

where M(1) = 1, M(NM) is an NM × NM matrix,
�m(NM,iM) for iM = 0, . . . , NM − 1 is the iMth WHT basis
vector having length NM. �m(NM,iM)T is the iMth row of
M(NM) in (3). When NM = 8, Fig. 2 shows the order-
8 WHT in dyadic order and sequency order. For example,
the �m(NM,2) of dyadic-ordered WHT is the �m(NM,3) of
sequency-ordered WHT. For sequency-ordered WHT, the ex-
tracted spatial frequency increases as the index iM of basis
vector �m(NM,iM) increases. The relationship between dyadic-
ordered and sequency-ordered WHT is detailed in [37]. For
ease of explanation, dyadic-ordered WHT will be used in the
following of this paper if not specified.

WHT has long been used for image representation under
numerous applications. More discussions on applying WHT
for pattern matching are available in [23], [36] and [32].

B. The GCK

The GCK was introduced as a filter in [24]. This paper
explains the GCK by transform using Kronecker product
which is denoted by ⊗. If A is a U1×Q1 matrix (an1,n2) and

B is a U2×Q2 matrix (bm1,m2), then A⊗B is a U1U2×Q1Q2

matrix as follows:

A⊗B=

⎡
⎢⎢⎢⎣

a0,0B a0,1B · · · a0,Q1−1B
a1,0B a1,1B · · · a1,Q1−1B

...
...

. . .
...

aU1−1,0B aU1−1,1B · · · aU1−1,Q1−1B

⎤
⎥⎥⎥⎦. (4)

More information on Kronecker product can be found in [38].
Let matrix S ∈ R

R×R be:

S = [�s(0), . . . ,�s(ir), . . . ,�s(R−1)]T . (5)

The 1D order-N GCK matrix of S and WHT matrix M (NM)

can be represented as:

V(N) = [�v(N,0), . . . �v(N,i), . . . �v(N,N−1)]T

= M(NM) ⊗ S, (6)

where N = NMR, (7)

V(N) is an N×N matrix, �v(N,i) for i = 0, . . . , N−1 denotes
the ith GCK basis vector given by �m(NM,iM) and �s(ir) as
follows:

�v(N,i) = �m(NM,iM) ⊗�s(ir). (8)

Consider J input elements xj for j = 0, 1, . . . , J−1, which
are divided into overlapping windows of size N (J > N). Let
the jth length-N input window for j = 0, 1, . . . , J −N be:

�x(N,j)
w = [xj , xj+1, . . . , xj+N−1]

T . (9)

For 1D pattern matching , �x
(N,j)
w are sliding candidate win-

dows which will be compared with the given pattern �x
(N)
t .

Let y(N, i, j) for i = 0, 1, . . . , N − 1; j = 0, 1, . . . , J −N be
the ith GCK projection value for the jth window and

y(N, i, j) =< �v(N,i), �x(N,j)
w >= �v(N,i)T �x(N,j)

w . (10)

In other words, y(N, i, j) is obtained by projecting the jth
input window �x

(N,j)
w defined in (9) onto the ith GCK basis

vector �v(N,i) defined in (8). Let �y(N,j) be the projection value
vector containing all order-N GCK projection values at the jth
window and

�y(N,j) = V(N)�x(N,j)
w (11)

For example, let M(NM)= 1√
2

[
1 1
1 −1

]
,S=

[
1 2
3 4

]
. Hence,

�y(4,j)= V(4)�x(4,j)
w =

[
M(2)⊗S

]
�x(4,j)
w

=

⎡
⎢⎢⎣
y(4, 0, j)
y(4, 1, j)
y(4, 2, j)
y(4, 3, j)

⎤
⎥⎥⎦= 1√

2

⎡
⎢⎢⎣
1 2 1 2
3 4 3 4
1 2 −1 −2
3 4 −3 −4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xj

xj+1

xj+2

xj+3

⎤
⎥⎥⎦. (12)

As pointed out in [36], the GCK matrix V(N) in (6)
is orthogonal if the S in (6) is orthogonal. The S in (6)
corresponds to the “seed” vectors in [24]. The 1D generalized
GCK proposed in [36] is defined as:

V(N) =

([
1 a0

1 −a0

]
⊗ . . .

[
1 ak

1 −ak

]
⊗ . . .

[
1 aG−1

1 −aG−1

])
⊗ S,

(13)
where ak ∈ Z

+, k = 0, . . . , G − 1. WHT is a member of
the GCK with S = I1 in (6). GCK is a subset of generalized
GCK with ak = 1 in (13).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 4

C. Definition of α-index and Being α2-related

The α-index and α2 relation defined in this paper is used
for the G4-GCK algorithm proposed in the next section.

Let the row index of WHT matrix M(NM) be iM. The
binary sequence α=[αGM−1 . . . αg. . .α1 α0] for αg ∈ {0, 1}
and g = 0, . . . , GM − 1 is called the α-index of iM, where

iM = αGM−12
GM−1+ · · ·+α12

1+α02
0, NM = 2GM . (14)

Thus the α-index is the binary representation of iM.
Let i

(0)
M , i

(1)
M , i

(2)
M and i

(3)
M be four possible values of iM.

For the fixed �s(ir), if the α-indices of i
(0)
M , i

(1)
M , i

(2)
M and i

(3)
M

are only different at αg and αg+1, then we say that: 1)
WHT basis vectors �m(NM,i

(0)
M), �m(NM,i

(1)
M), �m(NM,i

(2)
M) and

�m(NM,i
(3)
M) are α2-related at g; 2) the corresponding GCK

projection values y(N, i(0), j), y(N, i(1), j), y(N, i(2), j) and
y(N, i(3), j) represented as follows are α2-related at g:

⎡
⎢⎢⎣
y(N, i(0), j)

y(N, i(1), j)

y(N, i(2), j)

y(N, i(3), j)

⎤
⎥⎥⎦=

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
�m(NM,i

(0)
M

)T

�m(NM,i
(1)
M

)T

�m(NM,i
(2)
M

)T

�m(NM,i
(3)
M

)T

⎤
⎥⎥⎥⎥⎦⊗�s(ir)

T

⎞
⎟⎟⎟⎟⎠�x(N,j)

w . (15)

Note that the basis vectors �v(N,i(n)) generating y(N, i(n), j)
for n = 0, 1, 2, 3 in (15) have the same �s(ir) but different
�m(NM,i

(n)
M). Without losing generality, let the i(0)M , i

(1)
M , i

(2)
M and

i
(3)
M in (15) be represented by:

i
(0)
M =αGM−12

GM−1+. . .+ 0 · 2g+1 + 0· 2g+· · ·+α02
0, (16)

i
(1)
M =αGM−12

GM−1+. . .+ 0 · 2g+1 + 1· 2g+· · ·+α02
0, (17)

i
(2)
M =αGM−12

GM−1+. . .+ 1 · 2g+1 + 0· 2g+· · ·+α02
0, (18)

i
(3)
M =αGM−12

GM−1+. . .+ 1 · 2g+1 + 1· 2g+· · ·+ α02
0. (19)

Some WHT basis vectors �m(NM,iM) and their α-indices for
NM= 4, 8 are given in Table II. For example, the α-indices
[00], [01], [10] and [11] of 0, 1, 2 and 3 are only different
at α0 and α1, thus �m(4,0), �m(4,1), �m(4,2) and �m(4,3) are α2-
related at 0. The α-indices [000], [010], [100] and [110] of
0, 2, 4 and 6 are only different at α1 and α2, thus �m(8,0),
�m(8,2), �m(8,4) and �m(8,6) are α2-related at 1.

As an example for α2-related GCK projection values, when
M(NM) = M(4) and S ∈ R

2×2, we have:

V(8)�x(N,j)
w =

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

�m(4,0)T

�m(4,1)T

�m(4,2)T

�m(4,3)T

⎤
⎥⎥⎥⎦⊗
[
�s(0)

T

�s(1)
T

]⎞⎟⎟⎟⎠�x(N,j)
w

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�m(4,0)T ⊗�s(0)
T

�m(4,0)T ⊗�s(1)
T

�m(4,1)T ⊗�s(0)
T

�m(4,1)T ⊗�s(1)
T

�m(4,2)T ⊗�s(0)
T

�m(4,2)T ⊗�s(1)
T

�m(4,3)T ⊗�s(0)
T

�m(4,3)T ⊗�s(1)
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�x(N,j)
w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(8, 0, j)
y(8, 1, j)
y(8, 2, j)
y(8, 3, j)
y(8, 4, j)
y(8, 5, j)
y(8, 6, j)
y(8, 7, j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(20)

where WHT basis vectors �m(4,0), �m(4,1), �m(4,2) and
�m(4,3) are α2-related at 0. y(8, 0, j), y(8, 2, j), y(8, 4, j) and

TABLE II
THE α-INDEX FOR DYADIC-ORDERED WHT BASIS VECTOR.

Basis vector [1 1 1 1]T [1 1 -1 -1]T [1 -1 1 -1]T [1 -1 -1 1]T

),(MMm iN m (4, 0) m (4, 1) m (4, 2) m (4, 3)

-index [00] [01] [10] [11]

Basis vector [1 1 1 1 1 1 1 1]T [1 1 1 1 -1 -1 -1 -1]T …
),(MM iNm m (8, 0) m (8, 1) …

-index [000] [001] …

TABLE III
SYMBOLS AND TERMS DEFINED FOR GCK.

 Meanings
N, NM Length of vector.

i, iM Index of basis vector in a matrix.
j Index of input elements and windows.

),(jN
wx The input window starting at xj having length N:

[xj, xj+1, …, xj+N 1]T.
)(MM N 1D NM×NM WHT matrix.

),(MMm iN The iMth WHT basis vector having length NM.
V (N) 1D GCK matrix SMV M)()(NN .
v (N, i) The ith GCK basis vector having length N.

)(N
sV The SegGCK matrix)()(S

s

N
L

N
s VIV . Details

are given in Section V.

y(N, i, j) y(N, i, j) = TiN),(v),(jN
wx . The ith order-N GCK

projection value at the jth window.

-index of iM
Sequence]......[011 gGM

, which is the binary

representation of 0
0

1
1 2...2: M

MMM
G

Gii .

),(),()1()0(

, MMMM mm iNiN ,
),(),()3()2(

MMMM mandm iNiN
are 2-related at g

The -indices of)0(
Mi ,)1(

Mi ,)2(
Mi and)3(

Mi are only
different at g and g+1.

y(8, 6, j) in (20) are α2-related since they can be represented
as follows:

⎡
⎢⎣
y(8, 0, j)
y(8, 2, j)
y(8, 4, j)
y(8, 6, j)

⎤
⎥⎦=

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

�m(4,0)T

�m(4,1)T

�m(4,2)T

�m(4,3)T

⎤
⎥⎥⎥⎦⊗�s(0)

T

⎞
⎟⎟⎟⎠ �x(N,j)

w , (21)

where i(0)=0, i(1)=2, i(2)=4, i(3)=6, i
(0)
M =0, i

(1)
M =1, i

(2)
M =2,

i
(3)
M =3 for (15)-(19). Similarly, y(8, 1, j), y(8, 3, j), y(8, 5, j)

and y(8, 7, j) in (20) are α2-related. Table III summarizes the
main definitions used for GCK.

III. THE G4-GCK ALGORITHM FOR GCK

This section gives an example of computing 1D order-4
WHT on sliding windows using the G4-GCK algorithm in
Section III-A, and then describes the G4-GCK algorithm for
1D order-N GCK.

A. The G4-GCK algorithm for Order-4 WHT

If S = I1, then GCK matrix V(N) is the order-N WHT
matrix M(N). When N = 4, we have:

�y(4,j)=

⎡
⎢⎢⎣
y(4, 0, j)
y(4, 1, j)
y(4, 2, j)
y(4, 3, j)

⎤
⎥⎥⎦=1

2

⎡
⎢⎢⎣
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xj

xj+1

xj+2

xj+3

⎤
⎥⎥⎦. (22)

Let Δ(4, j) = y(4, 0, j) − y(4, 0, j + 1). Equation (22)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 5

implies that:⎡
⎢⎣

y(4, 0, j) − y(4, 0, j + 1)
y(4, 3, j) + y(4, 1, j + 1)
y(4, 2, j) + y(4, 2, j + 1)
y(4, 1, j) − y(4, 3, j + 1)

⎤
⎥⎦

=
1

2

⎡
⎢⎣
(xj+xj+1+xj+2+xj+3)−(xj+1+xj+2+xj+3+xj+4)
(xj−xj+1−xj+2+xj+3)+(xj+1+xj+2−xj+3−xj+4)
(xj−xj+1+xj+2−xj+3)+(xj+1−xj+2+xj+3−xj+4)
(xj+xj+1−xj+2−xj+3)−(xj+1−xj+2−xj+3+xj+4)

⎤
⎥⎦

=
1

2

⎡
⎢⎣
xj − xj+4

xj − xj+4

xj − xj+4

xj − xj+4

⎤
⎥⎦=

⎡
⎢⎣

y(4, 0, j)− y(4, 0, j + 1)
y(4, 0, j)− y(4, 0, j + 1)
y(4, 0, j)− y(4, 0, j + 1)
y(4, 0, j)− y(4, 0, j + 1)

⎤
⎥⎦=

⎡
⎢⎣
Δ(4, j)
Δ(4, j)
Δ(4, j)
Δ(4, j)

⎤
⎥⎦ .

(23)

Hence, Δ(4, j) relates the projection values in window j and
j + 1. Equation (23) implies⎡

⎣ y(4, 1, j + 1)
y(4, 2, j + 1)
y(4, 3, j + 1)

⎤
⎦ =

⎡
⎣ −y(4, 3, j)

−y(4, 2, j)
y(4, 1, j)

⎤
⎦+

⎡
⎣ Δ(4, j)

Δ(4, j)
−Δ(4, j)

⎤
⎦ . (24)

When we compute the projection values in window j +1 on
sliding windows, the projection values in windows 0, 1, ..., j
have been computed. Suppose y(4, 0, j+1) has been obtained
by other approaches, the G4-GCK algorithm: 1) computes
Δ(4, j) as Δ(4, j) = y(4, 0, j)−y(4, 0, j+1) by 1 addition; 2)
uses Δ(4, j) and projection values in window j for computing
the 3 projection values in window j + 1 by 3 additions using
(24). Computation of y(4, 0, j+1) is analyzed in Section III-B.

The GCK algorithm in [24] computes the WHT projection
values in window j+1 from the projection values in window
j and j − 1 as follows:

y(4, 1, j+1)=y(4, 0, j−1)−y(4, 0, j+1)−y(4, 1, j−1), (25)

y(4, 3, j+1)=y(4, 1, j)−y(4, 1, j+1)−y(4, 3, j), (26)

y(4, 2, j+1)=y(4,2, j−1)−y(4, 3, j−1)−y(4, 3, j+1). (27)

Given y(4, 0, j+1), the GCK algorithm will: 1) compute the
1st projection value, i.e. y(4, 1, j+1), from the 0th projection
values y(4, 0, j − 1) and y(4, 0, j +1) by 2 additions in (25);
2) compute the 3rd projection value from the 1st projection
values by 2 additions in (26); 3) compute the 2nd projection
value from the 3rd projection values by 2 additions in (27).

B. The G4-GCK algorithm for Order-N GCK

The theorem below is proved in Appendix A in [39].
Theorem 1: If four order-N GCK projection values

y(N, i(n), j) = [�m(NM,i
(n)
M)⊗�s(ir)]T�x(N,j)

w for n = 0, . . . , 3 as
defined in (10) are α2-related at g, where i

(n)
M are represented

in (16)-(19), �s(ir) has length R, 2GM = NM, then we have:⎡
⎣y(N, i(1), j +R4)

y(N, i(2), j +R4)

y(N, i(3), j +R4)

⎤
⎦=

⎡
⎣−y(N, i(3), j)

−y(N, i(2), j)

y(N, i(1), j)

⎤
⎦+
⎡
⎣ Δ(N, j, R4)
Δ(N, j, R4)
−Δ(N, j, R4)

⎤
⎦, (28)

where R4 = 2GM−g−2R, (29)

Δ(N, j, R4)=y(N, i(0), j)− y(N, i(0), j +R4). (30)

Table IV shows the steps and corresponding number of addi-
tions required using Theorem 1 to compute the 3 projection
values y(N, i(n), j + R4) for n = 1, 2, 3 from y(N, i(0), j +
R4). The computation in (28) corresponds to the example in
(24), where N=4, i(0)=0, i(1)=1, i(2)=2, i(3)=3, y(4, i, j) for

TABLE IV
COMPUTATION OF ORDER-N GCK USING THE G4-GCK ALGORITHM

Step a y(N, i(0), j+R4) is provided by other approaches.
- The computation required is not counted.

Step b),,(4RjN = y(N, i(0), j) – y(N, i(0), j+R4)
- One addition is required.

Step c y(N, i(1), j+R4) =),,(4RjN – y(N, i(3), j),
 y(N, i(2), j+R4) =),,(4RjN – y(N, i(2), j),
 y(N, i(3), j+R4) = y(N, i(1), j) –),,(4RjN .

- Three additions are required. Note that y(N, i(n), j) for
n=0, …, 3 are obtained during previous computation.

i = 0, 1, 2, 3 are α2-related at 0 (thus g = 0), GM = 2, R = 1,
so R4 = 22−0−2 · 1 = 1 and Δ(N, j,R4) = Δ(4, j).

Theorem 1 shows how to compute the other 3 projection
values from y(N, i(0), j+R4). The following corollary shows
that we can compute y(N, i(0), j +R4) from one of the other
3 projection values:

Corollary 2:

y(N, i(0), j +R4)=y(N, i(0), j)−Δ(N, j,R4), (31)

Δ(N, j,R4)=y(N, i(3), j) + y(N, i(1), j +R4)

=y(N, i(2), j) + y(N, i(2), j +R4)

=y(N, i(1), j)− y(N, i(3), j +R4). (32)

Equation (31) is derived from (30); (32) is from (28). The
computation of �y(N,j) using (28)-(32) is called the G4-GCK
algorithm because it groups 4 GCK projection values for
computation. Here is a summary of the G4-GCK algorithm.
If one of the 4 α2-related projection values y(N, i(n), j+R4)
for n = 0, . . . , 3 is provided, then we can: 1) use this provided
projection value to obtain Δ(N, j,R4) by 1 addition using (30)
or (32); 2) obtain the other 3 projection values by 3 additions
using (28), (31). Therefore, the G4-GCK algorithm requires 4
additions for obtaining 3 projection values, i.e. 4/3 additions
per window per projection value independent of transform size
N . In comparison, the GCK algorithm requires 2 additions
per projection value and the algorithm in [25] requires 3/2
additions.

The GCK algorithm, the algorithm in [25] and the G4-GCK
algorithm assume that one projection value is provided on all
window positions. Let the number of additions per window
required for computing this projection value be B 1. The GCK
algorithm requires 2(u − 1) + B1 additions per window for
obtaining u projection values and the G4-GCK algorithm
requires 4(u−1)/3+B1 additions. For example, the G4-GCK
algorithm requires 4(N − 1)/3 + B1 additions per window
and the GCK algorithm requires 2(N − 1) + B1 additions
per window for computing N WHT projection values. In
general, the G4-GCK algorithm requires 4(N −R)/3 +B1R
additions for computing N GCK projection values when R is
not necessarily 1. Normally, this provided projection value is
the dc component for 2D WHT and can be computed using
box-technique [40] by B1 = 4 additions per window, or using
integral image [41] by B1 = 3 additions per window or using
strip sum [42] by B1 = 3 additions per window. Since B1 is a
constant and is relatively small compared with the computation
required by u when u is large, B1 is skipped in [24] and in
the following of this paper.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 6

8

… …
jj 1

… …
jj 1

… …
jj 1

… …
jj 1

+

… …
j

… …
j

… …
jj 4j 4j 4

j 4 j 4 j 4

0

4

5 7 6

: The ith projection : Summation (sign skipped)i

+ + +

+

+
+

+

+

j 4
…

… … …

… … …

: Projection values in different window positions

(16, j-1, 1)

(16, j-4, 4)

12

Fig. 3. Utilization of the G4-GCK algorithm for obtaining the other projection
values from the 0th projection value. The number i in circle denotes the
ith projection. The rectangles denote projection values in different window
positions. The signs are skipped for the summation operations in this figure.

Generally, if we are provided with one of the NM pro-
jection values in window j, i.e. y(N, i, j) = [�m(NM,iM) ⊗
�s(ir)]T�x

(N,j)
w for iM = 0, . . . , NM−1, then we can efficiently

compute the remaining NM−1 projection values. As a special
case, when �s = I1, GCK is WHT and we have R = 1. Using
order-16 WHT as an example, we show in Fig. 3 how to obtain
all projection values in window j with the 0th projection value
provided:

1) Since the 0th, 4th, 8th and 12th WHT projection values
having α-indices [0000], [0100], [1000] and [1100] respec-
tively are α2-related at 2, i.e. g = 2, the G4-GCK algorithm
computes the y(16, 4, j), y(16, 8, j) and y(16, 12, j) from the
y(16, 0, j), which is shown in Fig. 3. In this case, we have
g = 2, R = 1, N = 16 and GM = 4 and the following from
Theorem 1:⎡
⎣ y(16, 4, j)

y(16, 8, j)
y(16, 12, j)

⎤
⎦=

⎡
⎣−y(16, 12, j − 1)

−y(16, 8, j − 1)
y(16, 4, j − 1)

⎤
⎦+
⎡
⎣ Δ(16, j − 1, 1)

Δ(16, j − 1, 1)
−Δ(16, j − 1, 1)

⎤
⎦,

where R4=2GM−g−2R = 24−2−2 · 1 = 1,

Δ(16, j − 1, 1)=y(16, 0, j − 1)− y(16, 0, j). (33)

2) The projection value y(16, 4, j) obtained in the previous
step can be used to obtain the projection values y(16, 5, j),
y(16, 6, j) and y(16, 7, j) because these 4 projection values
are α2-related at g = 0, which is shown in Fig. 3. In this
case, we have g = 0, R = 1, N = 16, GM = 4 and the
following from Theorem 1:⎡
⎣ y(16, 5, j)
y(16, 6, j)
y(16, 7, j)

⎤
⎦=

⎡
⎣−y(16, 7, j − 4)
−y(16, 6, j − 4)
y(16, 5, j − 4)

⎤
⎦+
⎡
⎣ Δ(16, j − 4, 4)

Δ(16, j − 4, 4)
−Δ(16, j − 4, 4)

⎤
⎦,

where R4=2GM−g−2R = 24−0−2 · 1 = 4,

Δ(16, j − 4, 4)=y(16, 4, j − 4)− y(16, 4, j). (34)

3) The remaining projection values are similarly obtained.

IV. THE G4-GCK ALGORITHM FOR HIGH DIMENSIONS

In the previous sections, we have illustrated the proposed
algorithm for 1D GCK where the input window is a vector. The
proposed algorithm can be used for computing GCK of higher
dimensions, e.g. 2D for images. As proved in Appendix C in
[39], the computation required is 4/3 additions per projection
value per window independent of dimension and size.

Snake orderIncreasing

 0 2 5 10 16
 1 3 7 12 18
 4 6 9 14
 8 11 13 19
15 17

 0 1 8 9
 3 2 7 10
 4 5 6 11
 15 14 13 12
 16 17 18 19

frequency order
Fig. 4. Snake order and increasing frequency order proposed in [7] for
WHT. Numbers denote the order. Arrows denote the computation dependence.
Projection value 1 is computed from 0 in both orders.

 0 4 5 6 32 36 37 38
 1 7 8 9 33 39 40 41
 2 10 11 12 34 42 43 44
 3 13 14 15 35 45 46 47
 16 20 21 22 48 52 53 54
 17 23 24 25 49 55 56 57
 18 26 27 28 50 58 59 60
 19 29 30 31 51 61 62 63

Fig. 5. Ordering 2D 8 × 8 WHT for the proposed algorithm. Numbers
denote the order. Solid arrows denote the computation dependence using the
proposed algorithm while dashed arrows denote the computation dependence
using the GCK algorithm in [7]. For example, projection values 4, 5 and 6
are computed from 0 by the proposed algorithm while 32 is computed from
6 by the GCK algorithm in [7].

A. Ordering GCK Projection Values

The Gray-code sequence (GCS) is proposed in [24] to order
the GCK projection values so that the current projection value
can be efficiently computed from the previously computed
projection values using the GCK algorithm. To order 2D
projection values, Moshe and Hel-Or propose two orders for
computing GCK on images in [7]. They are the snake order
and increasing frequency order. Fig. 4 shows the two orders
for the first 20 2D WHT projection values.

To efficiently compute projection values using the G4-GCK
algorithm for 2D natural images, we can use the order shown
in Fig. 5. For this order, 16 projection values form a group.
Groups are arranged in an increasing frequency order and
projection values within a group have a fixed order. This order
for larger sizes of WHT or GCK can be similarly obtained. The
snake order in Fig. 4 is suggested in [7] for the GCK algorithm.
It can be seen that the first 16 projection values in snake order
are the same as the group of 16 projection values in Fig. 5. In
the experimental results, we show that the G4-GCK algorithm
using this order is faster than the GCK algorithm using the
increasing frequency order for pattern matching.

When specific projection values are required, we recom-
mend constructing the GCS first and then examining the α2-
related projection values in the GCS for using the G4-GCK
algorithm.

V. THE SEGMENTED GCK

A. The Definition of Segmented GCK

Define the order-N Segmented GCK (SegGCK) matrix
V

(N)
s of identity matrix ILs and GCK matrix V(Ns) as

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 7

follows:

V(N)
s = [�v(N,0)

s , . . . , �v(N,i)
s , . . . , �v(N,N−1)

s]T

= ILs ⊗V(Ns)

=

⎡
⎢⎢⎢⎣

V(Ns) 0 0 0
0 V(Ns) 0 0
...

...
. . .

...
0 0 . . . V(Ns)

⎤
⎥⎥⎥⎦

(35)

where Ls = 2, 3, 4, . . . is the segmentation parameter, N =

LsNs, �v
(N,i)
s for i = 0, . . . , N − 1 is the ith SegGCK basis

vector having length N and subscript ·s is used for denotation
related to SegGCK. The order-N SegGCK matrix is an N×N

matrix. It is easy to see from (35) that V(N)
s is orthogonal if

V(Ns) is orthogonal. Thus we can make V(Ns) orthogonal
to obtain orthogonal SegGCK matrix and apply SegGCK for
transform domain pattern matching introduced in Section I-A.

Let �y(N,j)
s for j = 0, . . . ,W − 1 be the SegGCK projection

value vector containing all projection values at the jth window
and

�y(N,j)
s = V(N)

s �x(N,j)
w

= [ys(N, 0, j), . . . , ys(N, i, j) . . . , ys(N,N − 1, j)]T , (36)

where ys(N, i, j) = �v
(N,i)T

s �x
(N,j)
w is the ith SegGCK projec-

tion value for the jth window.
When the GCK matrix V(Ns) of SegGCK matrix is a WHT

matrix M(Ns), we call it the Segmented WHT (SegWHT). For
example, when Ls = 2, Ns = 4, N = 8 and V(Ns) = M(4)

in (35), we have an order-8 SegWHT matrix as follows:

V(8)
s = I2 ⊗M(4)=

[
M(4) 0

0 M(4)

]
. (37)

B. Fast Segmented GCK Algorithm

The jth input window of length N can be represented by
Ls subwindows of length Ns as follows:

�x(N,j)
w =

⎡
⎢⎢⎢⎢⎢⎣

xj

xj+1

xj+2

...
xj+N−1

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

�x
(Ns,j)
w

�x
(Ns,j+Ns)
w

�x
(Ns,j+2·Ns)
w

...
�x
(Ns,j+(Ls−1)·Ns)
w

⎤
⎥⎥⎥⎥⎥⎥⎦
, (38)

From (35), (36) and (38), the SegGCK projection value
vector can be represented by GCK projection value vectors
as follows:

�y(N,j)
s = V(N)

s �x(N,j)
w

=

⎡
⎢⎢⎢⎣
V(Ns) 0 0 0

0 V(Ns) 0 0
...

...
. . .

...
0 0 . . . V(Ns)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�x
(Ns,j)
w

�x
(Ns,j+Ns)
w

...
�x
(Ns,j+(Ls−1)·Ns)
w)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

V(Ns)�x
(Ns,j)
w

V(Ns)�x
(Ns,j+Ns)
w

...
V(Ns)�x

(Ns,j+(Ls−1)·Ns)
w)

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

�y(Ns,j)

�y(Ns,j+Ns)

...
�y(Ns,j+(Ls−1)·Ns)

⎤
⎥⎥⎥⎦,

(39)

...

),(jN
wx

N=LsNs

Ns

Ns

Order-Ns
GCK

Ns

Input
window

Segmented
subwindows

Segment

SegGCK
projection

value vector

Order-N SegGCK

GCK projection
value vectors

Ns

Ns

Ns

LsNs

),(jN
sy

),(ss nNjN
wx

for n=0,1,...Ls-1

),(ss nNjNy
for n=0,1,...Ls-1

Fig. 6. The order-N SegGCK that can be computed by segmenting input
window into Ls subwindows having length Ns and then computing order-Ns

GCK on the Ls subwindows.

where �x
(N,j)
w is the jth input window having length N(=

LsNs) and �x
(Ns,j)
w is the jth window having length Ns; �y

(N,j)
s

is the SegGCK projection value vector at the jth window and
�y(Ns,j) is the GCK projection value vector at the jth window.
In (39), we segment the length-N input window �x

(N,j)
w into

Ls length-Ns subwindows �x
(Ns,j)
w , . . . , �x

(Ns,j+(Ls−1)Ns)
w and

then compute order-Ns GCK on these Ls subwindows. This
procedure is shown in Fig. 6. Therefore, the projection of a
window is decomposed into projections of its subwindows.

According to the result in (39), obtaining the SegGCK
projection value vector �y(N,j)

s in the jth window is equivalent
to obtaining the Ls GCK projection value vectors �y(Ns,j+nNs)

for n = 0, . . . , Ls − 1. Similarly, obtaining �y
(N,j+Ns)
s in

the j + Nsth window is equivalent to obtaining Ls vectors
�y(Ns,j+nNs) for n = 1, . . . , Ls, where the Ls − 1 vectors
�y(Ns,j+nNs) for n = 1, . . . , Ls − 1 have been computed
previously in �y

(N,j)
s and only �y(Ns,j+LsNs) is not computed

previously. Fig. 7 shows the relationship between �y
(N,j)
s and

�y
(N,j+Ns)
s . When we compute �y(N,j+Ns)

s , we need only obtain
�y(Ns,j+LsNs) by about 4Ns/3 additions using the G4-GCK
algorithm. Thus the SegGCK algorithm requires about 4N s/3
additions to obtain N(= LsNs) SegGCK projection values per
window, while the GCK algorithm requires 2N additions and
the algorithm in [25] requires 3N /2 additions for obtaining
N GCK projection values. On average, the fast SegGCK
algorithm requires 4/(3Ls) addition(s) per projection value.

As an example, we have the following for the order-8
SegWHT in (37):

�y(8,j)
s = V(8)

s �x(8,j)
w = (I2 ⊗M(4))�x(8,j)

w

=

[
M(4) 0

0 M(4)

] [
�x
(4,j)
w

�x
(4,j+4)
w

]
=

[
�y(4,j)

�y(4,j+4)

]
(40)

�y(8,j+4)
s = V(8)

s �x(8,j+4)
w = (I2 ⊗M(4))�x(8,j+4)

w

=

[
M(4) 0

0 M(4)

][
�x
(4,j+4)
w

�x
(4,j+8)
w

]
=

[
�y(4,j+4)

�y(4,j+8)

]
(41)

The relationships in (40) and (41) are examples for (39),
where V(Ns) = M(4), Ls = 2, Ns = 4 and N = 8. According
to the result in (40) and (41), obtaining �y

(8,j)
s is equivalent to

obtaining �y(4,j) and �y(4,j+4). Similarly, obtaining �y
(8,j+4)
s is

equivalent to obtaining �y(4,j+4) and �y(4,j+8), where �y(4,j+4)

has been obtained in �y
(8,j)
s . This example is depicted in Fig. 7.

If we compute �y
(8,j+4)
s on sliding windows: 1) its 4 elements

in vector �y(4,j+4) have been computed when we compute
�y
(8,j)
s ; 2) the other 4 elements in �y(4,j+8) can be computed by

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 8

... ...
Computed
previously

Computed in
current window

),(jN sy
),(ss NjNy

))2(,(sss NLjNy
))1(,(sss NLjNy

)2,(ss NjNy

),(sss NLjNy

LsNs=N

Computed in
current window

8

),8(j
sy)4,8(j

sy

Computed
previously

General
case

Example

ys
(8, 0, j+4)

ys
(8, 1, j+4)

ys
(8, 2, j+4)

ys
(8, 3, j+4)

ys
(8, 4, j+4)

ys
(8, 5, j+4)

ys
(8, 6, j+4)

ys
(8, 7, j+4)

),4(jyys
(8, 0, j)

ys
(8, 1, j)

ys
(8, 2, j)

ys
(8, 3, j)

ys
(8, 4, j)

ys
(8, 5, j)

ys
(8, 6, j)

ys
(8, 7, j)

)4,4(jy

)4,4(jy

jth SegGCK
projection value

vector),(jN
sy),(s

s
NjNy

Ns

4

4

(j+N)th SegGCK
projection value

vector

)8,4(jy

),(ss NjNy

))1(,(sss NLjNy

Ns

Ns

Ns

Fig. 7. Computing order-N SegGCK on sliding windows. For general case,
SegGCK projection value vectors �y(N,j)

s and �y
(N,j+Ns)
s share Ls−1 GCK

projection value vectors. Arrows in the figure point out the Ls−1 shared GCK
projection value vectors. For (37), we have Ls = 2, Ns = 4 and N = 8.

about 16/3(= 4 ·4/3) additions using the G4-GCK algorithm.
Thus the fast SegGCK algorithm requires about 16/3 additions
for obtaining the 8 projection values in �y

(8,j+4)
s , i.e. 2/3

additions per projection value on average.
Since the memory storing �y(Ns,j) are regarded as SegGCK

projection values at Ls different input window positions,
�y(Ns,j) will be accessed multiple times, which improves
memory utilization and saves memory access time when these
data are found multiple times in the data cache.

For input window having length N , the Ls basis vec-
tors proposed in [22] can be represented by SegGCK basis
vectors while SegGCK contains the other N − Ls basis
vectors that cannot be represented in [22]. The method in
[31] segments non-rectangular patterns into certain number
of rectangles aiming at dealing with non-rectangular pattern
matching; the SegGCK segments rectangular pattern into Ls

rectangles aiming at improving the computational efficiency.
The SegGCK is inspired by the Incremental Dissimilarity
Approximations (IDA) algorithm [26], in which Tombari et
al. achieve computational efficiency by segmenting input data
into several parts. The IDA algorithm determines a succession
of rejection conditions characterized by increasing rejection
ability and computational complexity. The differences between
SegGCK and IDA are as follows: 1) the IDA is not transform
domain pattern matching algorithm while SegGCK is used for
transform domain pattern matching; 2) the IDA segments input
window into subwindows and uses the triangular inequality on
subwindows as the rejection condition while the SegGCK aims
at efficiently computing transformation on sliding windows;
3) as will be shown in the experimental results, the pattern
matching using SegGCK is faster than IDA.

C. Relationship Between GCK and SegGCK

Let % denote the modulo operation. Denote span(V (u×N))
as the space spanned by the u basis vectors in matrix

0
4
1
5
2
6
3
7

Ti),8(m
Ti

s
),8(

vSegWHT WHT

1 -1 0

+

Index
i

0
1
2
3
4
5
6
7

Relation Index
i

++
+++
+++
+++

Fig. 8. The linear relationship among order-8 SegWHT and order-8 WHT,
e.g. �m(8,0) = �v

(8,0)
s + �v

(8,4)
s , �m(8,1) = �v

(8,0)
s − �v

(8,4)
s . White represents

the value +1, grey represents the value −1 and vertical strips represent the
value 0. Normalization factors of basis vectors are skipped.

V(u×N) = [�v(N,0) . . . �v(N,u−1)]T . The following theorem
describes the links between GCK and SegGCK:

Theorem 3: If Ls GCK basis vectors in V
(Ls×N)
GCK are

represented as:

�v(N,i) = �m(NM,kLs+is) ⊗�s(ir), for is = 0, . . . , Ls − 1, (42)

where N = NMR, NM%Ls = 0, k = 0, . . . , NM

Ls
− 1, �s(ir)

is fixed and WHT vectors �m(NM,·) are in dyadic order or
sequency order, then we can find Ls SegGCK basis vectors in
V

(Ls×N)
SegGCK so that:

1) span(V
(Ls×N)
SegGCK) = span(V

(Ls×N)
GCK).

2) ∀�x, ||V(Ls×N)
GCK �x||2 = ||V(Ls×N)

SegGCK�x||2.
3) 4/(3Ls) additions and 4/3 additions per projection value

per window are required for computing V
(Ls×N)
SegGCK�x and

V
(Ls×N)
GCK �x respectively, thus the computation required

for SegGCK is 1/Ls of that required for GCK.

The proof for the theorem above is provided in Appendix
B in [39]. According to Theorem 3, ||V (Ls×N)

GCK �x||2 =

||V(Ls×N)
SegGCK�x||2 and so u GCK and SegGCK basis vectors

pack the same energy and reject the same mismatched candi-
dates when u = Ls, 2Ls, 3Ls, . . . for transform domain pattern
matching in Table I. Theorem 3 can be used for WHT and
SegWHT when we set �s(ir) = I1 in (42). We use the example
in (37) for illustrating the relationship between GCK and Seg-
GCK. Fig. 8 shows that all order-8 WHT basis vectors can be
linearly represented by SegWHT basis vectors. For example,
when k = 0, we have the dyadic ordered WHT vectors �m(8,0)

and �m(8,1), where N = NM = 8, Ls = 2, is = 0, 1,�s(ir) =
I1, R = 1 and NM%Ls = 8%2 = 0 in (42). And we select
Ls(= 2) SegWHT vectors �v(8,0)

s and �v
(8,4)
s in (37). Orthonor-

mal WHT basis vectors �m(8,0) and �m(8,1) can be linearly
represented by orthonormal SegWHT basis vectors �v

(8,0)
s and

�v
(8,4)
s . Thus span([�m(8,0) �m(8,4)]T) = span([�v

(8,0)
s �v

(8,4)
s]T)

and ∀�x, ||[�m(8,0) �m(8,4)]T�x||2 = ||[�v(8,0)
s �v

(8,4)
s]T�x||2. As for

computational requirement, the fast SegGCK algorithm com-
putes the SegWHT projection values by about 2/3 additions
per projection value per window as we have illustrated in the
example given by (40) and (41). The G4-GCK algorithm com-
putes the WHT projection values by 4/3 additions per window.
Thus the computation required for SegWHT is 1/Ls(= 1/2)
of that required for WHT.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 9

TABLE V
DATASETS WITH CORRESPONDING SIZES OF IMAGES AND PATTERNS USED

IN THE EXPERIMENTS AND THE AVERAGE TIME IN SECONDS REQUIRED BY
THE FS ON THESE DATASETS FOR ONE IMAGE-PATTERN PAIR.

Dataset Image Size Pattern Size FS time
S1 160 × 120 16 × 16 0.0087
S2 320 × 240 32 × 32 0.1197
S3 640 × 480 64 × 64 1.8825
S4 1280 × 960 128 × 128 28.1889
S5 1280 × 960 64 × 64 8.5514
S6 1280 × 960 32 × 32 2.2929

VI. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed
algorithm and SegGCK by comparing them with the FS and
the other FS equivalent algorithms in pattern matching. All of
the experiments were implemented on a 2.13GHz PC using C
on windows XP system with compiling environment VC 6.0.
SSD is used for measuring the dissimilarity between a pattern
and a candidate window.

A. Dataset and Algorithms Used for the Experiments

To investigate the computational efficiency of the proposed
SegGCK for pattern matching, we shall compare the following
FS equivalent algorithms with the FS:
• 1) FFT: the FFT-based approach in OpenCV [21];
• 2) IDA: the IDA algorithm in [26];
• 3) WHT: the WHT algorithm for WHT in [23];
• 4) GCK: the GCK algorithm for WHT in [24];
• 5) WHTG4: the G4-GCK algorithm for WHT;
• 6) SegGCK: the SegGCK algorithm for SegGCK.

The code for WHT is available online [43] and the code
for IDA is provided by the authors of [26]. The parameters
for WHT use the default values in [43] and those for IDA are
chosen according to [26]. For GCK, we choose the sequency-
ordered WHT and the code is based on the code used for
motion estimation in [7]. WHTGCK is in the order introduced
in Fig. 5.

As explained in [23], when the percentage of remaining
candidate windows is smaller than certain number, denoted by
ε, it is more efficient to use the FS-step for finding the matched
windows instead of using transformation. In the experiments,
the default setting is ε = 0.02% and Ls = 8 for SegGCK.
In the experiments, S = I1 is used for SegGCK, which
corresponds to SegWHT. According to the authors’ source
code for WHT in [43], we set ε = 2% as the default value for
WHT and GCK. Variations of Ls and ε are given in Section
VI-D.

Table V shows the 6 datasets used for evaluating the
performance of the compared algorithms. The dataset includes
different sizes of patterns and images. Our experiments include
a total of 120 images chosen among three databases: MIT
[44], medical [45], and remote sensing [46]. The MIT database
is mainly concerned with indoor, urban, and natural environ-
ments, plus some object categories such as cars and fruits.
The two other databases contain radiographs and Landsat
satellite images. The 120 images have 4 resolutions which are
160×120, 320×240, 640×480 and 1280×960. Each resolution
has 30 images. The OpenCV function ‘cvResize’ with linear
interpolation is used for producing the desired resolution of

images. For each image, 10 patterns were randomly selected
among those showing a standard deviation of pixel intensities
higher than a threshold (i.e., 45). Six datasets S1 to S6 with
image and pattern sizes given in Table V were formed. Each
dataset has 300 image-pattern pairs. Datasets S1 to S4 are the
same as those in [26]. Datasets S5 and S6 are to investigate
the effect of pattern size in pattern matching.

In the experiments, if the SSD between a candidate window
and the pattern is below a threshold T , the candidate window
is regarded to have matched the pattern. Similarly to the
experiment in [26], the threshold T for an N1×N2 pattern is:

T = 1.1 · SSDmin +N1N2, (43)

where SSDmin is the SSD between the pattern and the best
matching window. In the experiments, SSDmin is decided by
noise levels and types. Experiments on different noises will
be shown in Section VI-B and VI-C.

Since all evaluated algorithms find the same matching win-
dows as the FS, the only concern is computational efficiency
which is measured by execution time in the experiments. The
time speed-up of algorithm A over algorithm B is measured
by the execution time required by B divided by that required
by A. As an example, the time speed-up of GCK over FS
is measured as the execution time required by FS divided by
that required by GCK. The larger is the speed-up, the faster
is GCK compared with FS.

All necessary preprocessing like the time required for trans-
formation on patterns and the FS-step has been included in all
experiments. The G4-GCK algorithm and the GCK algorithm
require the availability of one projection value on all window
positions, which needs to be computed by other approaches.
This projection value is the dc component in the experiment
and computed using the box-technique [40] by 4 additions
per window position. The computation required for the dc
component has been included in all experiments for the related
algorithms.

B. Experiment 1 – Different Image-Pattern Sizes

In this experiment, we compare the time speed-ups yielded
by the considered algorithms in pattern matching on the
datasets S1− S4 which have different sizes of image-pattern
pairs. The time speed-ups yielded by GCK, IDA and SegGCK
over FS in pattern matching for each dataset are shown in Fig.
9. It can be seen that SegGCK outperforms the other compared
algorithms in the four different datasets. When there is no
noise, small u (less than 4) is sufficient for rejecting a large
amount of candidates. When u is small, WHTG4 does not
obviously outperform WHT. SegGCK performs better when
ε = 0.02%. In our experiments, we fix ε for each algorithm.
As illustrated later in Fig. 14, setting ε = 0.02% for GCK and
WHTG4 is not a good choice if we take all noise levels into
account.

C. Experiment 2 – Different Pattern Sizes and Noise Levels

To evaluate the performance of algorithms on the variation
of pattern sizes with image size unchanged, we shall examine
the experimental results on datasets S4-S6. In S4-S6, the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 10

S1 S2 S3 S4
0

200

400

600

800

sp
ee

d−
up

S1 S2 S3 S4
10

0

10
1

10
2

10
3

sp
ee

d−
up

 in
 L

og
 s

ca
le

 FFT
IDA
WHT
GCK
WHT

G4

SegGCK

Fig. 9. Time speed-up over FS on datasets S1−S4 for different algorithms
measured by normal scale (left) and log scale (right). The bars for each dataset
from left to right correspond to algorithms FFT, IDA, WHT, GCK, WHTG4

and SegGCK.

image size is always 1280×960, but the pattern size changes
from 128×128 to 32×32. Moreover, there are 3 different
kinds of noises having 4 noise levels added to each image.
Four different levels of Gaussian noise having variances 100,
200, 400 and 800 were used for distorting images, which are
referred to as G(1), G(2), G(3) and G(4) respectively. In
this setting, the 512 × 512 distorted “couple” images have
PSNR values 28.1, 25.1, 22.1 and 19.2 respectively when
compared with the original image in Figure 1. Four different
levels of Gaussian low-pass filters of standard deviation σ=0.2,
0.9, 1.6 and 2.3 were used for blurring each image, which
are referred to as B(1), B(2), B(3) and B(4) respectively.
In this setting, the 512 × 512 blurred “couple” images have
PSNR values 27.79, 27.18, 25.36 and 24.14 respectively.
Images of different JPEG compression quality levels were
tested, which are referred to as J(1), J(2), J(3) and J(4),
corresponding to quality measure QJPG = 90, 70, 50 and
30 respectively. Higher QJPG means higher quality. In this
setting, the 512×512 compressed “couple” images have PSNR
values 39.88, 34.93, 33.10 and 31.52 respectively.

The SSDmin in (43) is the SSD between the undistorted
pattern and the distorted pattern. The distorted pattern and
the distorted image have the same noise, e.g. G(1). Since the
threshold T in (43) is a bit greater than this SSDmin, the
distorted pattern will always be found as a matched window
if we put it into the image. Therefore, the miss rate is 0. As
shown in Fig. 11, the false positives using the threshold in
(43) are not greater than 0.0025% in S4-S6 for the 4 noise
levels in 3 different noise types.

Fig. 10 shows the speed-ups of examined fast algorithms
over FS in different sizes of patterns and different levels
of noises. It can be seen that SegGCK is the fastest except
for B(3) and B(4) in dataset S4 and WHT transform using
the G4-GCK algorithm is usually faster than WHT transform
using the GCK algorithm.

As the noise level increases, it is more difficult for the
rejection step to eliminate mismatched candidates and the FS-
step takes more time. The speed-up decreases for all rejection
based algorithms, i.e. WHT, IDA, GCK, WHTG4 and SegGCK.
Therefore the improvement of WHTG4 of GCK is not obvious
in this case, e.g. B(4) for dataset S4. When we take Fig. 10 and
9 into account, WHTG4 performs better than GCK when there
is median noise level, where more than 4 projection values
are required and the transformation time mainly influences the
whole process. When the pattern size is 128×128 for dataset
S4, the number of projection values used is the largest, and
advantage of SegGCK over GCK is more obvious when there
are more projection values computed.

G(1)G(2)G(3)G(4)
0

20

40

60

S6
G(1)G(2)G(3)G(4)

0

50

100

150

200

S5

G(1)G(2)G(3)G(4)
0

200

400

600

S4

B(1) B(2) B(3) B(4)
0

10

20

30

40

S6
B(1) B(2) B(3) B(4)

0

50

100

150

S5
B(1) B(2) B(3) B(4)

0

100

200

300

S4

J(1) J(2) J(3) J(4)
0

20

40

60

80

S6
J(1) J(2) J(3) J(4)

0

100

200

300

S5
J(1) J(2) J(3) J(4)

0

200

400

600

S4

Fig. 10. Time speed-ups yielded by different algorithms over FS for Gaussian
noise (upper row), image blur (middle row) and JPEG compression (bottom
row) in different noise levels and different sizes of image-pattern pairs in
pattern matching. Label of bars are the same as Fig. 9.

G(1) G(2) G(3) G(4)
0

0.001

0.002

F
al

se
−

po
si

tiv
es

 (
%

)

 S6
S5
S4

Fig. 11. False-positives (%) for noises G(1)-G(4) in dataset S4-S6 .

D. Experiment 3 – Parameters Selection

Experiments 1 and 2 use the default setting introduced in
Section VI-A. This section investigates the influence of the
parameters Ls and ε on the performance of pattern matching.
First of all, in this section, we study the effect of parameter
Ls for SegGCK on pattern matching performance. Then we
investigate the effect of parameter ε for SegGCK and GCK on
the performance in pattern matching.

Fig. 12 shows the influence of Ls on time speed-up of
SegGCK over FS in dataset S4. In this experiment, SegGCK
under different settings of Ls always outperforms WHT in
pattern matching. And we can find that the speed-up increases
as Ls increases from 4 to 8 while speed-up decreases as Ls

increases to 32 and 64. Both 8 and 16 are good choices of
Ls. 8 is chosen as a default setting because the best setting
of Ls is 8 in most cases although 16 is slightly better than 8
for noise level G(1). Here is an analysis of the result in Fig.
12. The computational efficiency of transform domain pattern
matching is determined by both the energy packing ability
of transform and the efficiency in computing transformation.
Since the SegGCK requires 4/(3Ls) addition(s) per projection
value, the larger is Ls, the more efficient is the computation
of transformation. However, the energy packing ability de-
grades as Ls increases. In the extreme, when Ns = 1, the
SegGCK matrix is simply identity matrix ILs . In this case,
no computation is required for computing projection values,
but the energy packing ability of SegGCK is the worst. Fig.
13(a) shows the number of remaining windows after each
projection for WHT and SegGCK with different Ls on dataset
S4 with Noise G(4). It can be seen that as Ls increases, the
rejection power of SegGCK decreases. For Ls being 4 and

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 11

G(1) G(2) G(3) G(4)
0

100

200

300

400

500
S

pe
ed

−
up

 L
s
=4

L
s
=8

L
s
=16

L
s
=32

L
s
=64

WHT

Fig. 12. The time speed-up over FS yielded by WHT and SegWHT with
different Ls on dataset S4 with noise G(1)-G(4).

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

%

Projection number
(a)

0 100 200 300 400
10

−3

10
−2

10
−1

10
0

%

Operations used for transform
(b)

 L
s
=4

L
s
=16

L
s
=64

WHT

L
s
=4

L
s
=16

L
s
=64

WHT

Fig. 13. The percentage of remaining windows, which is measured by
the number of remaining windows divided by the number of all candidate
windows, as a function of the number of projections (a) and the number of
operations required by transform (b) on dataset S4 with Noise G(4).

16, the rejection power of SegGCK is close to WHT. As Ls

increases to 64, the rejection power is seriously affected, which
explains why Ls = 64 is less efficient than Ls = 16 in Fig.
12. Thus the decision of Ls is dependent on the trade-off
between energy packing ability of projection values and the
computation required for obtaining these projection values. As
shown in Fig. 13(b), SegGCK using the SegGCK algorithm
requires much fewer operations than WHT using the GCK
algorithm in rejecting the same number of candidate windows.
This results in faster speed of SegGCK compared with GCK
in Fig. 12.

To make the percentage of remaining candidate windows
below ε for dataset S4, the average numbers of projection
values required by SegGCK are: 42, 66, 101 and 123 for noise
levels G(1), G(2), G(3) and G(4) respectively; 59, 83, 98 and
104 for B(1), B(2), B(3) and B(4) respectively; 26, 31, 36
and 54 for J(1), J(2), J(3) and J(4) respectively.

As introduced in Section V-C, it can be inferred from
Theorem 3 that u 1D WHT and SegGCK basis vectors reject
the same mismatched candidates when u = Ls, 2Ls, 3Ls, . . .
for transform domain pattern matching in Table I. This can
be similarly used for 2D transforms. Thus we can see from
Fig. 13(a) that SegGCK rejects similar amount of candidate
windows at certain projection number, e.g. 16 for L s = 16, 64
for Ls = 64. The theoretical analysis in Appendix E shows
that SegWHT is almost the same as WHT in energy packing
ability.

As explained in [23], when the percentage of remaining
candidate windows is smaller than certain number ε, it is more
efficient to use SSD directly for finding the matched windows
instead of using transformation. Fig. 14(a) shows the influence
of ε for both GCK and SegGCK on dataset S4 with Gaussian
noise G(4). It can be seen that 2% is better for GCK while
0.02% is better for SegGCK. Setting ε = 2% for both GCK
and SegGCK is not fair for SegGCK while setting ε = 0.02%
for both GCK and SegGCK is not fair for GCK. Thus we
have chosen their best setting, i.e. ε = 2% for GCK and
ε = 0.02% for SegGCK, for evaluation. Fig. 14(b) shows that
the transformation time required by SegGCK is obviously less

0.002 0.02 0.2 2 10
0

50

100

150

T
im

e
sp

ee
d−

up

(a)
0.002 0.02 0.2 2 10

0

200

400

600

800

(b)

T
ra

ns
fo

rm
 ti

m
e

(s
ec

s)

GCK
SegGCK

Fig. 14. (a) The speed-up over FS as a function of ε on the left figure and (b)
the total transformation time in seconds required for 300 image-pattern pairs
as a function of ε on the right figure. The FS-step in Table I is included for
measuring time speed-up. Experiments were done on dataset S4 with Noise
G(4). ε denotes the percentage of remaining window below which FS is used
for pattern matching, e.g. 2 and 10 in the X axis correspond to 2% and 10%
respectively.

than the transformation time required by GCK for different
situations of ε. When the whole time, i.e. transformation time
and the time required for the FS step, is considered, Fig. 14(a)
shows that SegGCK is more efficient than GCK for different
settings of ε. As shown in Fig. 14, the speed-up increases
as transformation time decreases when ε < 0.2%. When ε
is too large, e.g. ε = 10%, the FS-step requires too much
computational time and the whole process is less efficient;
when ε is smaller, the transformation time is longer but the
whole process is more efficient.

VII. CONCLUSIONS

This paper develops the G4-GCK algorithm for Gray code
kernels (GCK). We then develop the Segmented GCK (Seg-
GCK) which can be computed using a fast algorithm that is
more efficient than existing algorithms for WHT and GCK.

The advantages of G4-GCK algorithm and SegGCK are
summarized as follows.

• The G4-GCK algorithm which requires 4/3 additions per
datum per projection value is faster than any known fast
GCK algorithm.

• By segmenting input data into Ls parts, the SegGCK
algorithm requires 4/(3Ls) addition(s) per projection
value using the G4-GCK algorithm.

• The computational cost of G4-GCK algorithm and Seg-
GCK algorithm are independent of the transform size and
dimension.

• GCK and SegGCK are orthogonal transforms.
This paper describes the G4-GCK algorithm and SegGCK in
the context of transform domain pattern matching. However,
pattern matching is only an application example. The prop-
erties of the G4-GCK algorithm and SegGCK make them
attractive for applications which require transformation on
sliding windows such as image based rendering, image com-
pression, super-resolution, object detection, texture synthesis,
block matching in motion estimation, image denoising, action
recognition and wide baseline image matching.

ACKNOWLEDGMENT

The authors wish to thank Prof. Yacov Hel-Or and Prof.
Hagit Hel-Or for providing the thesis on generalized GCK
and their code implementing GCK and WHT, Prof. Stefano
Mattoccia and Dr. Federico Tombari for providing their code
implementing IDA, image datasets and helpful discussion,
Prof. Antonio Torralba and CSAIL for the use of the MIT
database, Prof. Rainer Koster and the Institute for Clinical
Radiology, Nuclear Medicine of the Lukas Hospital Neuss for

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 20?? 12

the use of the medical image database, and NASA for the use
of the remote sensing image database.

REFERENCES

[1] M. S. Aksoy, O. Torkul, and I. H. Cedimoglu, “An industrial visual
inspection system that uses inductive learning,” J. of Intelligent Manu-
facturing, vol. 15, no. 4, pp. 569–574, 2004.

[2] A. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-based rendering
using image-based priors,” in ICCV, vol. 2, 2003, pp. 1176–1183.

[3] T. Luczak and W. Szpankowski, “A suboptimal lossy data compression
based on approximate pattern matching,” IEEE Trans. Information
Theory, vol. 43, no. 5, pp. 1439–1451, 1997.

[4] W. Freeman, T. Jones, and E. Pasztor, “Example-based super-resolution,”
IEEE Computer Graphics and Applications, vol. 22, no. 2, pp. 56–65,
Mar./Apr 2002.

[5] A. Efros and T. Leung, “Texture synthesis by non-parametric sampling,”
in ICCV, Sept. 1999, pp. 1033–1038.

[6] C. M. Mak, C. K. Fong, and W. K. Cham, “Fast motion estimation for
H.264/AVC in Walsh Hadamard domain,” IEEE Trans. Circuits Syst.
Video Technol., vol. 18, no. 5, pp. 735–745, Jun. 2008.

[7] Y. Moshe and H. Hel-Or, “Video block motion estimation based on
Gray-code kernels,” IEEE Trans. Image Process., vol. 18, no. 10, pp.
2243–2254, Oct. 2009.

[8] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in CVPR, vol. 2, Jun. 2005, pp. 60– 65.

[9] R. Zhang, W. Ouyang, and W. K. Cham, “Image postprocessing by
non-local kuan’s filter,” J. of Visual Communication and Image Repre-
sentation, vol. 22, pp. 251–262, 2011.

[10] Y. Alon, A. Ferencz, and A. Shashua, “Off-road path following using
region classification and geometric projection constraints,” in CVPR,
vol. 1, Jun. 2006, pp. 689–696.

[11] Y. Hel-Or, H. Hel-Or, and E. David, “Fast template matching in non-
linear tone-mapped images,” in ICCV, 2011.

[12] Q. Wang and S. You, “Real-time image matching based on multiple
view kernel projection,” in CVPR, 2007.

[13] A. Goshtasby, 2-D and 3-D Image Registration for Medical, Remote
Sensing and Industrial Applications. New York: Wiley, 2005.

[14] B. Zitova and J. Flusser, “Image registration methods:a survey,” Image
Vis. Comput., vol. 21, no. 11, pp. 977–1000, 2003.

[15] W. Krattenthaler, K. Mayer, and M. Zeiler, “Point correlation: A
reduced-cost template matching technique,” in Proc. 1st IEEE Int. Conf.
Image Processing, vol. 1, Austin, TX, 1994, pp. 208–212.

[16] K. Briechle and U. D. Hanebeck, “Template matching using
fast normalized cross correlation,” in Proc. SPIE AeroSense
Symp., vol. 4387. SPIE, 2001, pp. 95–102. [Online]. Available:
http://link.aip.org/link/?PSI/4387/95/1

[17] P. S. Heckbert, “Filtering by repeated integration,” in Proc. SIG-GRAPH,
1986, pp. 315–321.

[18] H. Schweitzer, J. W. Bell, and F. Wu, “Very fast template matching,” in
ECCV, 2002, pp. 358–372.

[19] P. Simard, L. Bottou, P. Haffner, and Y. LeCun, “Boxlets: A fast
convolution algorithm for signal processing and neural networks,” Adv.
Neural Inf. Process. Syst., vol. 11, pp. 571–577, 1999.

[20] F. Tang, R. Crabb, and H. Tao, “Representing images using nonorthog-
onal Haar-like bases,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29,
no. 12, pp. 2120–2134, Dec. 2007.

[21] ;, “http://sourceforge.net/projects/opencvlibrary,” accessed in 2012.
[22] M. G. Alkhansari, “A fast globally optimal algorithm for template

matching using low-resolution pruning,” IEEE Trans. Image Process.,
vol. 10, no. 4, pp. 526–533, Apr 2001.

[23] Y. Hel-Or and H. Hel-Or, “Real time pattern matching using projection
kernels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 9, pp.
1430–1445, Sept. 2005.

[24] G. Ben-Artz, H. Hel-Or, and Y. Hel-Or, “The Gray-code filter kernels,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp. 382–393,
Mar. 2007.

[25] W. Ouyang and W. K. Cham, “Fast algorithm for Walsh Hadamard
transform on sliding windows,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 1, pp. 165–171, Jan. 2010.

[26] F. Tombari, S. Mattoccia, and L. D. Stefano, “Full search-equivalent
pattern matching with incremental dissimilarity approximations,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1, pp. 129–141, Jan.
2009.

[27] S. Mattoccia, F. Tombari, and L. D. Stefano, “Fast full-search equivalent
template matching by enhanced bounded correlation,” IEEE Trans.
Image Process., vol. 17, no. 4, pp. 528–538, Apr. 2008.

[28] B. Girod, Whats Wrong with Mean-Squared Error? MIT Press, 1993,
ch. 15.

[29] S. Santini and R. Jain, “Similarity measures,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 21, no. 9, pp. 871–883, Sept. 1999.

[30] A. Ahumada, “Computational image quality metrics: A review,” in Proc.
Soc. Information Display Intl Symp., vol. 24, 1998, pp. 305–308.

[31] M. Ben-Yehuda, L. Cadany, and H. Hel-Or, “Irregular pattern matching
using projections,” in Proc. 12th Int’l Conf. Image Processing (ICIP),
vol. 2, 2005, pp. 834–837.

[32] H. Schweitzer, R. Deng, and R. F. Anderson, “A dual bound algorithm
for very fast and exact template-matching,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 3, pp. 459–470, Mar. 2011.

[33] S.-D. Wei and S.-H. Lai, “Fast template matching based on normalized
cross correlation with adaptive multilevel winner update,” IEEE Trans.
Image Process., vol. 17, no. 11, pp. 2227–2235, Nov. 2008.

[34] Y. Hel-Or, T. Malzbender, and D. Gelb, “Synthesis and rendering of
3d textures,” in Texture 2003 Workshop accomp. ICCV 2003,, 2003, pp.
53–58.

[35] Q. Wang, J. Mooser, S. You, and U. Neumann, “Augmented exhibitions
using natural features,” Int’l. J. Virtual Reality, vol. 7, no. 4, pp. 1–8,
2008.

[36] G. Ben-Artzi, “Gray-code filter kernels (GCK)-fast convolution kernels,”
Master’s thesis, Bar-Ilan Univ., , Ramat-Gan, Israel, 2004.

[37] W. K. Cham and R. Clarke, “Dyadic symmetry and Walsh matrices,”
IEE Proceedings, Pt.F., vol. 134, no. 2, pp. 141–145, April 1987.

[38] A. Graham, Kronecker Products and Matrix Calculus: With Applica-
tions. 605 THIRD AVE., NEW YORK, NY 10158: JOHN WILEY &
SONS, INC.,, 1982.

[39] ;, “Currently in the supplementary file “TPAMI-2011-03-0149-
supp.pdf”. Will be put online with the help of IEEE.”

[40] M. J. McDonnell, “Box-filtering techniques,” Comput. Graph. Image
Process., vol. 17, pp. 65–70, 1981.

[41] P. Viola and M. Jones, “Robust real-time face detection,” Int’l J.
Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[42] W. Ouyang, R. Zhang, and W. K. Cham, “Fast pattern matching using
orthogonal Haar transform,” in CVPR, 2010.

[43] ;, “www.faculty.idc.ac.il/toky/software/software.htm,” accessed in 2012.
[44] ——, “http://people.csail.mit.edu/torralba/images,” accessed in 2012.
[45] ——, “www.data-compression.info/corpora/lukascorpus.” accessed in

2012.
[46] ——, “http://zulu.ssc.nasa.gov/mrsid,” accessed in 2012.

Wanli Ouyang received the B.S. degree in computer
science from Xiangtan University, Hunan, China,
in 2003. He received the M.S. degree in computer
science from the College of Computer Science and
Technology, Beijing University of Technology, Bei-
jing, China. He received the PhD degree in the
Department of Electronic Engineering, The Chinese
University of Hong Kong, in which he is now a Post-
doctoral Fellow. His research interests include image
processing, computer vision and pattern recognition.
He is a member of the IEEE.

Renqi Zhang received the B.S. degree in Electronic
Engineering from Xidian University, Xi’an, China,
in 2006. He received his Ph.D. degree from the
Department of Electronic Engineering, The Chinese
University of Hong Kong, in 2012. His research in-
terests include image/video coding, computer vision
and machine learning.

Wai-Kuen Cham graduated from The Chinese Uni-
versity of Hong Kong in 1979 in Electronics. He
received his M.Sc. and Ph.D. degrees from Lough-
borough University of Technology, U.K., in 1980
and 1983 respectively. From June 1984 to April
1985, he was a senior engineer in Datacraft Hong
Kong Limited and a lecturer in the Department
of Electronic Engineering, Hong Kong Polytechnic
(now The Polytechnic University of Hong Kong).
Since May 1985, he has been with the Department
of Electronic Engineering, The Chinese University

of Hong Kong.

