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Abstract—The visual cues from multiple support regions of
different sizes and resolutions are complementary in classifying
a candidate box in object detection. Effective integration of
local and contextual visual cues from these regions has become
a fundamental problem in object detection. In this paper, we
propose a gated bi-directional CNN (GBD-Net) to pass messages
among features from different support regions during both
feature learning and feature extraction. Such message passing
can be implemented through convolution between neighboring
support regions in two directions and can be conducted in
various layers. Therefore, local and contextual visual patterns can
validate the existence of each other by learning their nonlinear
relationships and their close interactions are modeled in a more
complex way. It is also shown that message passing is not always
helpful but dependent on individual samples. Gated functions are
therefore needed to control message transmission, whose on-or-
offs are controlled by extra visual evidence from the input sample.
The effectiveness of GBD-Net is shown through experiments
on three object detection datasets, ImageNet, Pascal VOC2007
and Microsoft COCO. Besides the GBD-Net, this paper also
shows the details of our approach in winning the ImageNet
object detection challenge of 2016, with source code provided on
https://github.com/craftGBD/craftGBD. In this winning system,
the modified GBD-Net, new pretraining scheme and better region
proposal designs are provided. We also show the effectiveness of
different network structures and existing techniques for object
detection, such as multi-scale testing, left-right flip, bounding box
voting, NMS, and context.

Index Terms—Convolutional neural network, CNN, deep learn-
ing, deep model, object detection.

I. INTRODUCTION

Object detection is one of the fundamental vision problems.
It provides basic information for semantic understanding of
images and videos. Therefore, it has attracted a lot of attentions
[1], [2], [3]. In this paper, we regard detection as a problem
of classifying candidate boxes. Due to large variations in
viewpoints, poses, occlusions, lighting conditions and back-
ground, object detection is challenging. Recently, since the
seminal work in [4], convolutional neural networks (CNNs)
[5], [6], [7], [8], [9] have been proved to be effective for object
detection because of its power in learning features.

In object detection, a candidate box is considered as true-
positive for an object category if the intersection-over-union
(IoU) between the candidate box and the ground-truth box is
greater than a threshold. When a candidate box covers only
a part of the ground-truth regions, there are some potential
problems.
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Fig. 1. The necessity of passing messages among features from supporting
regions of different resolutions, and controlling message passing according
different image instances. Blue windows indicate the ground truth bounding
boxes. Red windows are candidate boxes. It is hard to classify candidate
boxes which cover parts of objects because of similar local visual cues in (a)
and variation of occlusion in (b). Local details of rabbit ears are useful for
recognizing the rabbit head in (c). The contextual human head helps to find
that the rabbit ear worn on human head should not be used to validate the
existence of the rabbit head in (d). Best viewed in color.

• Visual cues in this candidate box may not be sufficient to
distinguish object categories. Take the candidate boxes
in Fig. 1(a) for example, they cover parts of animal
bodies and have similar visual cues, but with different
ground-truth class labels. It is hard to distinguish their
class labels without information from larger surrounding
regions of the candidate boxes.

• Classification on the candidate boxes depends on how
much an object is occluded, which has to be inferred
from larger surrounding regions. Because of occlusion,
the candidate box covering a rabbit head in Fig. 1(b1)
should be considered as a true positive of rabbit, because
of large IoU with the ground truth. Without occlusion,
however, the candidate box covering a rabbit head in
Fig. 1(b2) should not be considered as a true positive
because of small IoU with the ground truth.

To handle these problems, contextual regions surrounding
candidate boxes are naturally helpful. Besides, surrounding
regions also provide contextual information about background
and other nearby objects to help detection. Therefore, in
our deep model design and some existing works [10], [11],
information from surrounding regions are used to improve
classification of a candidate box.

On the other hand, when CNN takes a large region as input,
it sacrifices the ability in describing local details, which are
sometimes critical in discriminating object classes, since CNN

https://github.com/craftGBD/craftGBD
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encodes input to a fixed-length feature vector. For example, the
sizes and shapes of ears are critical details in discriminating
rabbits from hamsters. But they may not be identified when
they are in a very small part of the CNN input. It is desirable
to have a network structure that takes both surrounding regions
and local part regions into consideration. Besides, it is well-
known that features from different resolutions are complemen-
tary [12].

One of our motivations is that features from different
resolutions and support regions validate the existence of one
another. For example, the existence of rabbit ears in a local
region helps to strengthen the existence of a rabbit head,
while the existence of the upper body of a rabbit in a larger
contextual region also helps to validate the existence of a
rabbit head. Therefore, we propose that features with different
resolutions and support regions should pass messages to each
other in multiple layers in order to validate their existences
jointly during both feature learning and feature extraction. This
is different from the naive way of learning a separate CNN
for each support region and concatenating feature vectors or
scores from different support regions for classification.

Our further motivation is that care should be taken when
passing messages among contextual and local regions. The
messages are not always useful. Taking Fig. 1(c) as an exam-
ple, the local details of the rabbit ear is helpful in recognizing
the rabbit head, and therefore, its existence has a large weight
in determining the existence of the rabbit head. However, when
this rabbit ear is artificial and worn on a girl’s head in Fig. 1(d),
it should not be used as the evidence to support the existence
of a rabbit head. Extra information is needed to determine
whether the message of a contextual visual pattern, e.g. rabbit
ear, should be transmitted to support the existence of a target
visual pattern, e.g. rabbit head. In Fig. 1(d), for example, the
extra human-face visual cues indicates that the message of the
rabbit ear should not be transmitted to strengthen the evidence
of seeing the rabbit head. Taking this observation into account,
we design a network that uses extra information from the input
image region to adaptively control message transmission.

The ILSVRC16 challenge and COCO16 challenge for ob-
ject detection has many entries that are worse than the best
of the last year, although many of them have already used the
same network structure or better network structures compared
with the champion of the last year. The reason is from the
details on implementing the object detection system. Using
the ImageNet dataset and our winner system, we provide
ablation study on the effectiveness of recent techniques for
object detection, such as network structure, multi-scale testing,
left-right flip, bounding box voting, NMS, context, and model
ensemble. The code for these techniques is also provided
online.

In this paper, we propose a gated bi-directional CNN
(GBD-Net) architecture that adaptively models interactions of
contextual and local visual cues during feature learning and
feature extraction. Our contributions are in three-fold.

• A bi-directional network structure is proposed to pass
messages among features from multiple support regions
of different resolutions. With this design, local patterns
pass detailed visual messages to larger patterns and large

patterns passes contextual visual messages in both direc-
tions. Therefore, local and contextual features cooperate
with each other on improving detection accuracy. We
implement message passing by convolution.

• We propose to control message passing with gate func-
tions. With such gate functions, message from a found
pattern is transmitted only when it is useful for some
samples, but is blocked for others.

• A new deep learning pipeline for object detection. It ef-
fectively integrates region proposal, feature representation
learning, context modeling, and model averaging into the
detection system. Detailed component-wise analysis is
provided through extensive experimental evaluation. This
paper also investigates the influence of CNN structures
for the large-scale object detection task under the same
setting. The details of our submission to the ImageNet
Object Detection Challenge is provided in this paper, with
source code provided online.

The proposed GBD-Net is implemented under the fast RCNN
detection framework [13]. The effectiveness is validated
through the experiments on three datasets, ImageNet [2],
PASCAL VOC2007 [1] and Microsoft COCO [3].

An earlier version of this paper is published in [14]. In this
journal version, we modify the GBD-Net, which is shown to
improve mAp by 1.1%, compared with the original GBD-Net
in [14]. A better pretraining approach adapting for the roi-
pooling operation in the Fast-RCNN framework is also added,
which improves mAP by 0.8%. Details on our approach in the
ImageNet challenge of 2016 are also provided. We show step-
by-step how the existing techniques are combined with the
modified GBD-Net to reach the best accuracy in the ImageNet
Challenge of 2016.

II. RELATED WORK

Impressive improvements have been achieved on object
detection in recent years. They mainly come from better region
proposals, detection pipeline, feature learning algorithms and
CNN structures, iterative bounding box regression and making
better use of local and contextual visual cues.

Region proposal. Selective search [15] obtained region
proposals by hierarchically grouping segmentation results.
Edgeboxes [16] counted the number of contours enclosed by a
bounding box for inferring the likelihood of an object. Faster
RCNN [17] and CRAFT [18] obtained region proposals with
the help of convolutional neural networks. Pont-Tuest and Van
Gool [19] studied the statistical difference between the Pascal-
VOC dataset [1] and Microsoft CoCo dataset [3] to obtain
better object proposals. In this paper, we adopt an improved
version of the CRAFT in providing the region proposals.

Iterative regression. Since the candidate regions are not
very accurate in locating objects, fine-grained search [20],
multi-region CNN [11], LocNet [21] and AttractioNet [22]
were proposed for more accurate localization of objects. These
approaches conducted bounding box regression iteratively so
that the candidate regions gradually move towards the ground
truth object.

Object detection pipeline. The state-of-the-art deep learn-
ing based object detection pipeline RCNN [4] extracted CNN



MANUSCRIPT 3

features from the warped image regions and applied a linear
SVM as the classifier. By pre-training on the ImageNet clas-
sification dataset and finetuning on the target object detection
dataset, it achieved great improvement in detection accuracy
compared with previous sliding-window approaches that used
handcrafted features on PASCAL-VOC and the large-scale
ImageNet object detection dataset. In order to obtain a higher
speed, Fast RCNN [13] shared the computational cost among
candidate boxes in the same image and proposed a novel roi-
pooling operation to extract feature vectors for each region
proposal. Faster RCNN [17] combined the region proposal
step with the region classification step by sharing the same
convolution layers for both tasks. Region proposal is not
necessary. Some recent approaches, e.g. Deep MultiBox [23],
YOLO [24] and SSD [25], directly estimated the object classes
from predefined sliding windows.

Learning and design of CNN. A large number of works
[6], [7], [8], [9], [26], [27], [28], [29] aimed at designing
network structures and they were found to be effective in the
detection task. The works in [6], [7], [8], [9], [27] proposed
deeper networks. People [30], [8], [31], [32] also investigated
how to effectively train deep networks. Simonyan et al. [8]
learn deeper networks based on the parameters in shallow
networks. Ioffe et al. [30] normalized each layer inputs for
each training mini-batch in order to avoid internal covariate
shift. He et al. [31] investigated parameter initialization ap-
proaches and proposed parameterized RELU. Li et al. [33]
proposed multi-bias non-linear activation (MBA) layer to
explore the information hidden in the magnitudes of responses.
Ouyang et al. investigate the use of attributes for learning
better features [34]. The factor of long tail distribution in the
number of samples for different classes is investigated in [34].

Our contributions focus on a novel bi-directional network
structure to effectively make use of multi-scale and multi-
context regions. Our design is complementary to above re-
gion proposals, pipelines, CNN layer designs, and training
approaches. There are many works on using visual cues from
object parts [35], [11], [36] and contextual information [35],
[11], [37]. Gidaris et al. [11] adopted a multi-region CNN
model and manually selected multiple image regions. Girshick
et al. [36] and Ouyang et al. [35] learned the deformable
parts from CNNs. In order to use the contextual information,
multiple image regions surrounding the candidate box were
cropped in [11], whole-image classification scores were used
in [35]. These works simply concatenated features or scores
from object parts or context while we pass message among
features representing local and contextual visual patterns so
that they validate the existence of each other by non-linear
relationship learning. Experimental results show that GBD-
Net is complementary to the approaches in [11], [35]. As a
step further, we propose to use gate functions for controlling
message passing, which was not investigated in existing works.

Passing messages and gate functions. Message passing at
the feature level was studied using Recurrent neural network
(RNN) for features of the same resolution [10] and gate func-
tions are used to control message passing in long short-term
memory (LSTM) networks [38]. However, both techniques
have not been used to for features from different resolution

and context yet, which is fundamental in object detection. Our
message passing mechanism and gate functions are specifically
designed for this setting. GBD-Net is also different from RNN
and LSTM in the sense that it does not have recurrence and
does not share parameters across resolutions/contexts.

III. GATED BI-DIRECTIONAL CNN

We briefly introduce the fast RCNN pipeline in Section
III-A and then provide an overview of our approach in Section
III-B. The use of roi-pooling for obtaining features of different
resolutions and contexts is discussed in Section III-C. Section
III-D focuses on the proposed bi-directional network structure
and its gate function. Section III-E introduces the modified
GBD structure. Section III-F explains the details of the training
scheme.

A. Fast RCNN pipeline

We adopt the Fast RCNN[13] as the object detection
pipeline with four steps.

• Step 1) Candidate box generation. Thousands or hundreds
of candidate boxes are selected from a large pool of
boxes.

• Step 2) Feature map generation. Given an image as the
input of CNN, feature maps are generated.

• Step 3) Roi-pooling. Each candidate box is considered
as a region-of-interest (roi) and a pooling function is
operated on the CNN feature maps generated in the step
2. After roi-pooling, candidate boxes of different sizes
are pooled to have the same feature size.

• Step 4) Classification. CNN features after roi-pooling go
through several convolutions, pooling and fully connected
layers to predict the class label and location refinement
of candidate boxes.

B. Framework overview

An overview of the GBD-Net is shown in Fig. 2. Based on
the fast RCNN pipeline, our proposed model takes an image
as input, uses roi-pooling operations to obtain features with
different resolutions and different support regions for each
candidate box, and then the gated bi-direction layer is used
for passing messages among features, and finally classification
and bounding box regression are done. We use the Inception-
v2 [30] as the baseline network structure, i.e. if only one
support region and one branch is considered, Fig. 2 becomes a
Inception-v2. Currently, messages are passed between features
in one layer. It can be extended by adding more layers between
the features of different resolutions for passing messages in
these layers.

We use the same candidate box generation and feature map
generation steps as the fast RCNN introduced in Section III-A.
In order to take advantage of complementary visual cues in
the surrounding/inner regions, the major modifications of fast
RCNN are as follows.

• In the roi-pooling step, regions with the same center
location but different sizes are pooled from the same
feature maps for a single candidate box. The regions with
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Fig. 2. Overview of our framework. The network takes an image as input and produces feature maps. The roi-pooling is done on feature maps to obtain features
with different resolutions and support regions. Red arrows denote our gated bi-directional structure for passing messages among features. Gate functions G
are defined for controlling the message passing rate. Then all features go through multiple CNN layers with shared parameters to obtain the final features that
are used to predict the class and location refinement of bounding box. Using only h3

2 would reduce the network to Fast-RCNN. Parameters on black arrows
are shared across branches, while parameters on red arrows are not shared. Best viewed in color.

2
3

1
3

3
3

4
3

2

3

4

1

Fig. 3. Exemplar implementation of our model. The gated bi-directional
network, dedicated as GBD-Net, is placed between Inception (4d) and
Inception (4e). Inception (4e), (5a) and (5b) are shared among all branches.

different sizes before roi-pooling have the same size after
roi-pooling. In this way, the pooled features correspond to
different support regions and have different resolutions.

• Features with different resolutions optionally go through
several CNN layers to extract their high-level features.

• The bi-directional structure is designed to pass messages
among the roi-pooled features with different resolutions
and support regions. In this way, features corresponding
to different resolutions and support regions verify each
other by passing messages to each other.

• Gate functions are used to control message transmission.
• After message passing, the features for different resolu-

tions and support regions are then passed through several
CNN layers for classification.

An exemplar implementation of our model is shown in Fig.
3. There are 9 inception modules in the Inception-v2 [30].
Roi-pooling of multiple resolutions and support regions is
conducted after the 6th inception module, which is inception
(4d). Then the gated bi-directional network is used for passing
messages among features and outputs h3

1, h3
2, h3

3, and h3
4.

After message passing, h3
1, h3

2, h3
3 and h3

4 are fed forward to

the 7th, 8th, 9th inception modules and the average pooling
layers separately and then used for classification. There is
option to place roi-pooling and GBD-Net after different layers
of the Inception-v2. In Fig. 3, they are placed after inception
(4d).

C. Roi-pooling of features with different resolutions and sup-
port regions

The roi-pooling layer designed in [13] is used to obtain
features with different resolutions and support regions. Given
a candidate box bo = [xo, yo, wo, ho] with center location
(xo, yo), width wo and height ho, its padded bounding box is
denoted by bp. bp is obtained by enlarging the original box
bo along both x and y directions with scale p as follows:

bp = [xo, yo, (1 + p)wo, (1 + p)ho] . (1)

In RCNN [4], p is 0.2 by default and the input to CNN is
obtained by warping all the pixels in the enlarged bounding
box bp to a fixed size w × h, where w = h = 224 for the
Inception-v2 [30]. In fast RCNN [13], warping is done on
feature maps instead of pixels. For a box bo, its corresponding
feature box bf on the feature maps is calculated and roi-
pooling uses max pooling to convert the features in bf to
feature maps with a fixed size.

In our implementation, a set of padded bounding boxes
{bp} with p = −0.2, 0.2, 0.8, or 1.7 are generated for each
candidate box bo. By roi-pooling on the CNN features, these
boxes are warped into the same size, which is 14×14×608 for
Inception-v2. The CNN features of these padded boxes have
different resolutions and support regions. In the roi-pooling
step, regions corresponding to b−0.2,b0.2,b0.8 and b1.7 are



MANUSCRIPT 5

b
o

ROI-Pooling
f
-0.2

f
0.2

f
0.8

f
1.7

b
-0.2

b
0.8

b
0.2

b
1.7

Image Feature Map Support Regions

Fig. 4. Illustration of using roi-pooling to obtain CNN features with different
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Fig. 5. Details of our bi-directional structure. ⊗ denotes convolution. The
input of this structure is the features {h0

i } of multiple resolutions and
contextual regions. Then bi-directional connections among these features are
used for passing messages across resolutions/contexts. The output h3

i are
updated features for different resolutions/contexts after message passing.

warped into features f−0.2, f0.2, f0.8 and f1.7 respectively.
Figure 4 illustrates this procedure.

Since features f−0.2, f0.2, f0.8 and f1.7 after roi-pooling
are of the same size, the context scale value p determines
both the amount of padded context and also the resolution of
the features. A larger p value means a lower resolution for
the original box but more contextual information around the
original box, while a small p means a higher resolution for
the original box but less context.

D. Gated Bi-directional network structure (GBD-v1)

1) Bi-direction structure: Figure 5 shows the architecture
of our proposed bi-directional network. It takes features
f−0.2, f0.2, f0.8 and f1.7 as input and outputs features h3

1, h3
2,

h3
3 and h3

4 for a single candidate box. In order to have features
{h3

i } with different resolutions and support regions cooperate
with each other, this new structure builds two directional
connections among them. One directional connection starts
from features with the smallest region size and ends at features
with the largest region size. The other is the opposite.

For a single candidate box bo, h0
i = fpi representing

features with context pad value pi. The forward propagation

for the proposed bi-directional structure can be summarized
as follows:

h1
i = σ(h0

i ⊗w1
i + b0,1

i ) + σ(h1
i−1 ⊗w1

i−1,i + b1
i ), (2)

( high res. to low pass)

h2
i = σ(h0

i ⊗w2
i + b0,2

i ) + σ(h2
i+1 ⊗w2

i,i+1 + b2
i ), (3)

(low res. to high pass)

h3
i = σ(cat(h1

i ,h
2
i )⊗w3

i + b3
i ), (4)

( message integration)

• There are four different resolutions/contexts, i =
1, 2, 3, 4.

• h1
i represents the updated features after receiving mes-

sage from h1
i−1 with a higher resolution and a smaller

support region. It is assumed that h1
0 = 0, since h1

1 has
the smallest support region and receives no message.

• h2
i represents the updated features after receiving mes-

sage from h2
i+1 with a lower resolution and a larger

support region. It is assumed that h2
5 = 0, since h2

4 has
the largest support region and receives no message.

• cat() concatenates CNN features maps along the channel
direction.

• The features h1
i and h2

i after message passing are inte-
grated into h3

i using the convolutional filters w3
i .

• ⊗ represents the convolution operation. The biases and
filters of convolutional layers are respectively denoted by
b∗
∗ and w∗

∗.
• Element-wise RELU is used as the non-linear function
σ(·).

From the equations above, the features in h1
i receive

the messages from the high-resolution/small-context fea-
tures and the features h2

i receive messages from the low-
resolution/large-context features. Then h3

i collects messages
from both directions to have a better representation of the ith
resolution/context. For example, the visual pattern of a rabbit
ear is obtained from features with a higher resolution and a
smaller support region, and its existence (high responses in
these features) can be used for validating the existence of
a rabbit head, which corresponds to features with a lower
resolution and a larger support region. This corresponds to
message passing from high resolution to low resolution in (2).
Similarly, the existence of the rabbit head at the low resolution
also helps to validate the existence of the rabbit ear at the
high resolution by using (3). w1

i−1,i and w1
i,i+1 are learned

to control how strong the existence of a feature with one
resolution/context influences the existence of a feature with
another resolution/context. Even after bi-directional message
passing, {h3

i } are complementary and will be jointly used for
classification in later layers.

Our bi-directional structure is different from the bi-direction
recurrent neural network (RNN). RNN aims to capture dy-
namic temporal/spatial behavior with a directed cycle. It is
assumed that parameters are shared among directed connec-
tions. Since our inputs differ in both resolutions and contextual
regions, convolutions layers connecting them should learn
different relationships at different resolution/context levels.
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Fig. 6. Illustration of the bi-directional structure with gate functions. The ⊗
represents the convolution and the switch button represents the gate function.
The left one corresponds to Eq. (5) and the right one corresponds to Eq. (6).

Therefore, the convolutional parameters for message passing
are not shared in our bi-directional structure.

2) Gate functions for message passing: Instead of passing
messages in the same way for all the candidate boxes, gate
functions are introduced to adapt message passing for indi-
vidual candidate boxes. Gate functions are also implemented
as convolution. The design of gate function considers the
following aspects.

• hk
i has multiple feature channels. The learned gate filters

are different for different channels.
• The message passing rates should be controlled by the

responses to particular visual patterns which are captured
by gate filters.

• The message passing rates can be determined by visual
cues from nearby regions, e.g. in Fig. 1, a girl’s face
indicates that the rabbit ear is artificial and should not
pass message to the rabbit head. Therefore, the size of
gate filters should not be 1× 1 and 3× 3 is used in our
implementation.

We design gate functions as convolution layers with the
sigmoid non-linearity to make the message passing rate in the
range of (0,1). With gate functions, message passing in (2)
and (3) for the bi-directional structure is changed as follows:

h1
i = σ(h0

i ⊗w1
i + b0,1

i ) +G1
i • σ(h1

i−1 ⊗w1
i−1,i + b1

i ),

(5)

h2
i = σ(h0

i ⊗w2
i + b0,2

i ) +G2
i • σ(h2

i+1 ⊗w2
i,i+1 + b2

i ),
(6)

G1
i = sigm(h0

i−1 ⊗wg
i−1,i + bg

i−1,i) (7)

G2
i = sigm(h0

i+1 ⊗wg
i+1,i + bg

i+1,i) (8)

where sigm(x) = 1/[1 + exp(−x)] is the element-wise
sigmoid function and • denotes element-wise product. G is the
gate function to control message passing. It contains learnable
convolutional parameters wg

∗,b
g
∗ and uses features from the

co-located regions to determine the rates of message passing.
When G∗

i is 0, the message is not passed. The formulation for
obtaining h3

i is unchanged. Fig. 6 illustrates the bi-directional
structure with gate functions.

E. The modified GBD structure (GBD-v2)

For the models submitted to ImageNet challenge, the GBD-
v1 is modified. The modified GBD-Net structure has the
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Fig. 7. Details of our modified bi-directional structure. Compared with the
stucture in Fig. 5, an identity mapping layer is added from h0

∗ to h3
∗. The

convolution from [h1
∗,h

2
∗] to h3

∗ in Fig. 5 is changed into max-pooling.

following formulation:

h3,m
i = max(h1

i ,h
2
i ), (9)

h3
i = h0

i + βh3,m
i , (10)

where h1
i and h2

i are defined in (5) and (6). Fig. 7 shows the
modified GBD structure. The operations requried for obtaining
h1
i and h2

i are the same as before. The main changes are in
obtaining h3

i . The changes made are as follows.
First, in the previous GBD structure, h1

i and h2
i are concate-

nated and then convoled by filters to produce the output h3
i ,

as shown in (4). In the modified sturcture, a max pooling is
used for merging the information from h1

i and h2
i . This saves

the memory and computation required by the convolution in
the previous GBD structure.

Second, we add an identity mapping layer in the struture,
which corresoponds to the h3

i = h0
i + ... in (4) and (10). The

aim of the GBD structure is to refine the input h0
i by using the

messages from other contextual features. Since the parameters
for the layers after the output h3

i are from pretrained model,
a drastic change of the output h3

i from the input h0
i would

cause difficulty in training the layers after the layer h3
i to

adapt at the training stage. Therefore, this drastic change
would lead to difficulty in learning a good model. When
we train the previous GBD structure, careful initialization of
the convolution parameters and the gate functions has to be
done in order to learn well. For example, we have to set the
gate function close 0 and the convolution parameter close to
identity mapping for initialization. With the identity mapping
layer, however, a simple initialization using the approach in
[39] works well.

Third, a constant β is multiplied with the merged messages
h3,m
i from other contextual regions. We empirically found

that it improves detection accuracy by using β to control the
magnitude of the messages from other contextual features.

F. Implementation details, training scheme, and loss function

For the state-of-the-art fast RCNN object detection frame-
work, CNN is first pre-trained with the ImageNet image
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classification data, and then utilized as the initial point for fine-
tuning the CNN to learn both object confidence scores s and
bounding-box regression offsets t for each candidate box. Our
proposed framework also follows this strategy and randomly
initialize the filters in the gated bi-direction structure while
the other layers are initialized from the pre-trained CNN. The
final prediction on classification and bounding box regression
is based on the representations h3

i in Eq. (10). For a training
sample with class label y and ground-truth bounding box
offsets v = [v1, v2, v3, v4], the loss function of our framework
is a summation of the cross-entropy loss for classification and
the smoothed L1 loss for bounding box regression as follows:

L(y, tc,v, tv) = Lcls(y, tc) + λ[y ≥ 1]Lloc(v, tv), (11)

Lcls(y, tc) = −
∑
c

δ(y, c) log tc, (12)

Lloc(v, tv) =

4∑
i=1

smoothL1(vi − tv,i), (13)

smoothL1(x) =

{
0.5x2 if |x| ≤ 1

|x| − 0.5 otherwise
, (14)

where the predicted classification probability for class c is
denoted by tc, and the predicted offset is denoted by tv =
[tv,1, tv,2, tv,3, tv,4], δ(y, c) = 1 if y = c and δ(y, c) = 0
otherwise. λ = 1 in our implementation. Parameters in the
networks are learned by back-propagation.

G. Discussion

The GBD structure is built upon the features of different
resolutions and contexts. Its placement is independent of the
place of roi-pooling. In an extreme setting, roi-pooling can be
directly applied on raw pixels to obtain features of multiple
resolutions and contexts, and in the meanwhile the GBD struc-
ture can be placed in the last convolution layer for message
passing. In this implementation, fast RCNN is reduced to
RCNN where multiple regions surrounding a candidate box
are cropped from raw pixels instead of feature maps.

IV. THE OBJECT DETECTION FRAMEWORK ON IMAGENET
2016

In this section, we describe object detection framework used
for our submission to the 2016 ImageNet Detection Challenge.

A. Overview at the testing stage

• Step 1) Candidate box generation. An improved version
of CRAFT in [18] is used for generating the region
proposal.

• Step 2) Box classification. The GBD-Net predicts the
class of candidate boxes.

• Step 3) Average of multiple deep model outputs is used
to improve the detection accuracy.

• Step 4) Postprocessing. The whole-image classification
scores are used as contextual scores for refining the
detection scores. The bounding box voting scheme in [11]
is adopted for adjusting the box locations based on its
neigbouring boxes.

B. Candidate box generation

We use two versions of object proposal. In early version
of our method, we use the solutions published in [18] which
is denoted as Craft-v2. In the final ImageNet submission, we
further improve the results and denote it as Craft-v3. A brief
review of Craft-v2 and details of Craft-v3 are described as
follows.

1) Craft-V1 and V2: In Craft [18], the RPN [17] is extended
to be a two-stage cascade structure, following the “divide and
conquer ” strategy in detection task. In the first stage, the
standard RPN is used to generate about 300 proposals for
each image, which is similar to the setting in [17]. While in
the second stage, a two-category classifier is further used to
distinguish objects from background. Specially in the paper,
we use a two-category fast RCNN [13]. It provides fewer and
better localized object proposals than the standard RPN. Craft-
V1, which was used in our earlier version [14], and Craft-V2
can be found in our early paper [18]. Craft-V1 and Craft-V2
are only different in pre-training. Craft-V1 is pre-trained from
1000-class image classification, Craft-V2 is pre-trained from
RPN [17].

2) Craft-v3: Compared with Craft-v2, the differences in
Craft-v3 includes:

• Random crop is used in model training, to ensure objects
in different scales are roughly trained equally.

• Multi-scale pyramid is used in model testing, in order to
improve recall of small objects.

• The positive and negative samples in RPN training are
balanced to be 1:1.

• LocNet [21] object proposals are added, which we found
are complementary to the Craft based proposals.

Implementation details and experimental comparison can be
found in Section V-E1.

C. Box classification with GBD-Net

The GBD-Net is used for predicting the object category of
the given candidate boxes. The preliminary GBD-Net structure
in [14] was based on the Inception-v2. In the challenge we
make the following modifications:

• The baseline network is pretrained on ImageNet 1000-
class data with object-centric labels without adapting
to fas RCNN. In the challenge, we learn the baseline
network with object-centric labels by adapting it to fas
RCNN.

• A ResNet with 269 layers is used as the baseline model
for the best performing GBD-Net.

• The structure of GBD-Net is changed from GBD-v1 to
GBD-v2, with details in Section III-E.

D. Pretraining the baseline

1) The baseline ResNet-269 model: The network structure
of baseline ResNet with 269 layers is shown in Fig. 8.
Compared with the ResNet [27] with 152 layers, we simply
increase the number of stacked blocks for conv3 x, conv4 x,
and conv5 x. The basic blocks adopt the identity mapping
used in [40]. At the pre-training stage, the stochastic depth in
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Fig. 8. Architecture for the baseline ResNet-269. Building blocks are the identity mapping blocks used in [40], with the numbers of blocks stacked.
Downsampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

[41] is used. Stochastic depth is found to reduce training time
and test error in [41]. For fast RCNN, we place the roi-pooling
after the 234th layer, which is in the stacked blocks conv4 x.

2) Adapt the pretraining for roi-pooling: Pretraining can
be done on the ImageNet 1000-class image classification data
by taking the whole image as the input of CNN, this is called
image-centric pretraining. On the other hand, since bounding
box labels are provided for these classes in ImageNet, the
input of CNN can be obtained from cropping and warping
image patches in the bounding boxes, which is called object-
centric pretraining. For the RCNN framework, it is found by
our previous work [35] that object-centric pretraining performs
better than image-centric pretraining.

For fast RCNN, however, we found that the CNN with
object-centric pretraining does not perform better than the
1000-class image-centric pretraining. Take the Inception-v2 as
an exmaple, after finetuning on the ImageNet train+val1 data,
the Inception-v2 with image-centric pretraining has 49.1%
mAP on the ImageNet val2 while the Inception-v2 with object-
centric pretraining drops to 48.4% mAP. This drop in mAp
is caused by the roi-pooling in fast RCNN. RCNN and Fast
RCNN use different ways to obtain features of the same size
for candidate regions of different sizes. RCNN warps the
candidate image region. Fast RCNN keeps the image size
unchanged and uses roi-pooling for warping features. Warping
at image level for RCNN and roi-pooling at feature level are
not equivalent operations.

In order to have the pretrained CNN aware of the difference
mentioned above, we pretrain on object-centric task with
roi-pooling layer included. Denote the bounding box of an
object by (x1, y1, x2, y2). When pretraining the Inception-
v2 with the roi-pooling layer, we include 32 pixels as the
extrapolated region for this object. Therefore, the target box
is (xt,1, yt,1, xt,2, yt,2) = (x1− 32, y1− 32, x2 +32, y2 +32).
To augment data, we randomly shake the target box as follows:

bf = (xf,1, yf,1, xf,2, yf,2) (15)
= (xt,1 + α1W, yt,1 + α2H,xt,2 + α3W, yt,2 + α4H),

where W = x2−x1+1 and H = y2−y1+1 are respectively the
width and height of the bounding box. α1, α2, α3, and α4 are
randomly sampled from [−0.1 0.1] independently. The image
region within the box bf in (15) is warped into an image with
shorter side randomly sampled from {300, 350, 400, 450, 500}
and the longer side constrained to be no greater than 597.
Batch size is set as 256 with other settings the same as
Inception-v2. We observe 0.8% mAP gain for Inception-

v2 with this pretraining when compared with pretraining by
image-centric classification.

E. Technical details on improving performance

1) Multi-scale testing: Multi-scale training/testing has been
developed in [13], [43] by selecting features from a feature
pyramid. We only use the multi-scale input at the testing
stage. With a trained model, we compute feature maps on
an image pyramid, with the shorter side of the image being
{400, 500, 600, 700, 800} and longer size being no greater than
1000. Roi-pooling and its subsequent layers are performed on
the feature map of one scale. We did not observe obvious
improvement by averaging the scores of a bounding box using
its features pooled from multiple scales.

2) Left-right flip: We adopt left-right flip at both the train-
ing and testing stages. At training stage, the training images are
augmented by flipping them. The candidate boxes are flipped
accordingly. At testing stage, an image and its corresponding
candidate boxes are flipped and treated as the input of the
CNN to obtained the detection scores for these boxes. The
scores and estimated box locations from the original image
and the flipped image are averaged.

3) Bounding box voting: The bounding box voting scheme
in [11] is adopted. After finding the peaked box with the
highest score on its neighborhood, the final object location
is obtained by having each of the boxes that overlap with the
peaked one by more than a threshold to vote for the bounding
box location using its score as weight. This threshold is set as
0.5 for IoU.

4) Non-maximum suppression (NMS) threshold: For Im-
ageNet, the NMS threshold was set as 0.3 by default. We
empirically found 0.4 to be a better threshold. Setting this
threshold from 0.3 to 0.4 provides 0.4-0.7% mAP gain, with
variation for different models.

5) Global context: From the pretrained image-centric CNN
model, we finetune on the ImageNet detection data by treating
it as an image classification problem. The 200-class image
classification score is then used for combining with the 200-
class object detection scores by weighted averaging. The
weights are obtained by greedy search from the val1 data.

6) Model ensemble: For model ensemble, 6 models are
automatically selected by greedy search on ImageNet Det val2
from 10 models. The average of scores and bounding box
regression results of these 6 models are used for obtaining the
model averaging results.



MANUSCRIPT 9

TABLE I
OBJECT DETECTION MAP (%) ON IMAGENET VAL2 FOR STATE-OF-THE-ART APPROACHES WITH SINGLE MODEL (SGL) AND AVERAGED MODEL (AVG).

appraoch RCNN Berkeley GoogleNet DeepID- Superpixel ResNet Ours
[4] [4] [9] Net[35] [42] [27]

val2(sgl) 31.0 33.4 38. 5 48.2 42.8 60.5 65
val2(avg) n/a n/a 40.9 50.7 45.4 63.6 68

V. EXPERIMENTAL RESULTS

A. Implementation details

The GBD-net is implemented based on the fast RCNN
pipeline. The Inception-v2 will be used for ablation study and
our submission to the ILSVRC2016 is based on the ResNet
with identity mapping [40] and the PolyNet [28]. The gated
bi-directional structure is added after the 6th inception module
(4d) of Inception-v2 and after the 234th layer for ResNet-269.
In the GBD-Net, layers belonging to the baseline networks are
initialized by these baseline networks pre-trained on the Im-
ageNet 1000-class classification and localization dataset. The
parameters in the GBD layers as shown in Fig. 5, which are
not present in the pre-trained models, are randomly initialized
when finetuning on the detection task. In our implementation
of GBD-Net, the feature maps hn

i for n = 1, 2, 3 in (2)-(4)
have the same width, height and number of channels as the
input h0

i for i = 1, 2, 3, 4.
We evaluate our method on three public datasets, ImageNet

object detection dataset [2], Pascal VOC 2007 dataset [1]
and Microsoft COCO object detection dataset [3]. Since the
ImageNet object detection task contains a sufficiently large
number of images and object categories to reach a conclusion,
evaluations on component analysis of our training method
are conducted on this dataset. This dataset has 200 object
categories and consists of three subsets. i.e., train, validation
and test data. In order to have a fair comparison with other
methods, we follow the same setting in [4] and split the whole
validation subset into two subsets, val1 and val2. The network
finetuning step uses training samples from train and val1
subsets. The val2 subset is used for evaluating components
and the performance on test data is from the results submitted
to the ImageNet challenge. Because the input for fast RCNN
is an image from which both positive and negative samples
are sampled, we discard images with no ground-truth boxes
in the val1. Considering that lots of images in the train subset
do not annotate all object instances, we reduce the number
of images from this subset in the batch. For all networks,
the learning rate and weight decay are fixed to 0.0005 during
training, the batch size is 192. We use batch-based stochastic
gradient descent to learn the network. The overhead time at
inference due to gated connections is less than 40%.

B. Overall performance

1) ImageNet object detection dataset: We compare our
framework with several other state-of-art approaches [4], [9],
[30], [35], [42], [27]. The mean average precision for these
approaches are shown in Table I. Our work is trained using
the provided data of ImageNet. Compared with the published

TABLE IV
OBJECT DETECTION MAP (%) ON MS-COCO FOR STATE-OF-TH-ART

APPROACHES.

Method Training Data Network mAP (%)
val test-dev

FRCN [13] train VGG-16 – 35.9

Faster RCN [17] train VGG16 41.5 42.1
train+val VGG-16 – 42.7

Faster RCN [27] train ResNet-101 48.4 –
train+val ResNet-101 – 55.7

ION [10] train VGG16 – 44.7
ION-c [10] train+val35k VGG16 – 53.4
SSD [25] train+val35k VGG-16 – 46.5

GBD
train ResNet-269 ??? ???

train+val35k ResNet-269 – ???
train+val ResNet-269 – ???

results and recent results in the provided data track on Ima-
geNet 2015 challenge, our single model result performs better
than the ResNet [27] by 4.5% in mAP for single-model result.

Table II shows the experimental results for UvA,
GoogleNet, ResNet, which are best performing approaches in
the ImageNet challenge 2013, 2014 and 2015 respectively. The
top-10 approaches attending the challenge 2016 are also shown
in Table II. Our approach has the similar mAP as Hikvision in
single model and performs better for averaged model. Among
the 200 categories, our submission wins 109 categories in
detection accuracy.

2) PASCAL VOC2007 dataset: It contains 20 object cate-
gories. Following the most commonly used approach in [4],
we finetune the Inception-v2 with the 07+12 trainval set and
evaluate the performance on the test set. Our GBD-net obtains
77.2% mAP while the baseline Inception-v2+FRCN is only
73.1%.

3) Microsoft COCO object detection dataset: Table IV
shows the experimental results for Fast R-CNN[13], Faster
R-CNN [17] using VGG and ResNet, SSD [25], ION [10]
and ION’s COCO competition version, denoted by ION-
c. Our GBD-Net performs better than these approaches. To
investigate on the effectiveness of GBD-net, we use MCG
[44] for region proposal and report both the overall AP
and AP50 on the closed-test data. The baseline Inception-
v2+FRCN implemented by us obtains 24.4% AP and 39.3%
AP50, which is comparable with Faster RCNN (24.2% AP)
on COCO detection leadboard. With our proposal gated bi-
directional structure, the network is improved by 2.6% AP
and reaches 27.0% AP and 45.8% AP50, which further shows
the effectiveness of our GBD model.

C. Investigation on different settings in GBD-v1

1) Investigation on gate functions: Gate functions are in-
troduced to control message passing for individual candidate
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TABLE II
OBJECT DETECTION MAP (%) ON IMAGENET FOR THE APPROACHES ATTENDING THE IMAGENET CHALLENGE WITH SINGLE MODEL (SGL) AND

AVERAGED MODEL (AVG) WHEN TESTED ON THE VAL2 DATA AND TEST DATA WITHOUT USING EXTERNAL DATA FOR TRAINING.

Year 2013 2014 2015 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016
Team UvA GoogleNet ResNet VB Faceall MIL UT KAIST-SLSP CIL 360+MCG Trimps NUIST Hikvision Ours

val2 (sgl) - 38.8 60.5 - 49.3 - - - - - - 65.1 65
val2 (avg) - 44.5 63.6 - 52.3 - - - - - - 67 68
Test (avg) - 38 62.1 48.1 48.9 53.2 53.5 55.4 61.6 61.8 60.9 65.2 66.3
Test (sgl) 22.6 43.9 58.8 - 46.1 - - - 59.1 58.1 - 63.4 63.4

TABLE III
DETECTION MAP (%) FOR FEATURES WITH DIFFERENT PADDING VALUES p FOR GBD-NET-V1 USING INCEPTION-V2 AS THE BASELINE. CRAFT-V1 IS

USED FOR REGION PROPOSAL. GBD-NET-V1 IS USED WHEN MULTIPLE RESOLUTIONS ARE USED. DIFFERENT pS LEAD TO DIFFERENT RESOLUTIONS
AND CONTEXTS.

Padding value p Single resolution Multiple resolutions
-0.2 0.2 0.8 1.7 -0.2+0.2 0.2+1.7 -0.2+0.2+1.7 -0.2+0.2+0.8+1.7

mAP 46.3 46.3 46.0 45.2 47.4 47.0 48.0 48.9

boxes. With gate functions, the mAP is 48.9% when the
GBD-Net places roi-pooling after the 6th inception module.
Without gate functions, it is hard to train the network with
message passing layers in our implementation. It is because
nonlinearity increases significantly by message passing layers
and gradients explode or vanish, just like it is hard to train
RNN without LSTM (gating). In order to verify it, we tried
different initializations. The network with message passing
layers but without gate functions has 42.3% mAP if those
message passing layers are randomly initialized. However, if
those layers are initialized from a well-trained GBD-net, the
network without gate functions reaches 48.2% mAP. These
two results show the effectiveness of gate functions in making
the model trainable.

2) Investigation on using different feature region sizes:
The goal of our proposed gated bi-directional structure is to
pass messages among features with different resolutions and
contexts. In order to investigate the influence from different
settings of resolutions and contexts, we conduct a series of
experiments. In these experiments, features of a particular
padding value p is added one by one. The experimental
results for these settings are shown in Table III. When single
padding value is used, it can be seen that simply enlarging
the support region of CNN by increasing the padding value p
from 0.2 to 1.7 does harm to detection performance because
it loses resolution and is influenced by background clutter. On
the other hand, integrating features with multiple resolutions
and contexts using our GBD-Net substantially improves the
detection performance as the number of resolutions/contexts
increases. Therefore, with the GBD-Net, features with differ-
ent resolutions and contexts help to validate the existence of
each other in learning features and improve detection accuracy.

3) Investigation on combination with multi-region: This
section investigates experimental results when combing our
gated bi-directional structure with the multi-region approach.
We adopt the simple straightforward method and average
the detection scores of the two approaches. The baseline
Inception-v2 model has mAP 46.3%. With our GBD-Net the
mAP is 48.9%. The multi-region approach based on Inception-
v2 has mAP 47.3%. The performance of combining our GBD-
Net with mutli-region Inception-v2 is 51.2%, which has 2.3%

mAP improvement compared with the GBD-Net and 3.9%
mAP improvement compared with the multi-region Inception-
v2. This experiment shows that the improvement brought by
our GBD-Net is complementary to the multi-region approach
in [11].

D. Investigation on GBD-v1 and GBD-v2

This section investigates the experimental results for the
GBD-v1 in Section III-D and the GBD-v2 introduced in
Section III-E. For the same Inception-v2 baseline, the GBD-v1
introduced in Section III improves the Inception-v2 by 2.6%
in mAP. The GBD-v2 structure introduced in Section III-E
improves mAP by 3.7%. Therefore, the GBD-v2 is better in
improving the detection accuracy. Since GBD-v2 has better
performance and is easier to train, we use the GBD-v2 as the
default GBD structure in the following part of this paper if
not specified. Since the components investigated in Section
V-C are not different for GBD-v1 and GBD-v2, we directly
adopt the settings found to be effective in GBD-v1 for GBD-
v2. In GBD-v2, roi-pooling is placed at the module (4d)
for Inception-v2 and the 234th layer for ResNet-269. Gate
function is used. We use feature regions with padding values
p = -0.2, 0.2, 0.8, 1.7.

E. Investigation on other components in the detection frame-
work

In the component-wise study, none of the techniques in
Section IV-E is included if not specified. We adopt the left-
right flip at the the training stage for data augmentation for all
of the evaluated approaches but did not use flip at the testing
stage if not specified.

1) Region proposal: We list the improvements on top of our
early work Craft-v2 [18] in Table V. Random crop in training
and multi-scale testing also help and they lead to 0.74% and
1.1% gain in recall, respectively. In multi-scale training, we
want to keep the distribution of image size after log operation
to be uniform. Therefore, in each iteration, we randomly select
a scale number r in range of [16, 512] and randomly select an
object in a image with the length l. Then the resize scale is
set to be l/r this image. This multi-scale training improves
recall by 0.7%.
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TABLE V
RECALL RATE ON IMAGENET VAL2 WITH DIFFERENT COMPONENTS IN PROPOSAL GENERATION.

Components. baseline (Craft-v2) [18] +Random Crop training +Multi-scale testing +Balancing positive and negative samples +ensemble
Recall @ 150 proposals 92.37% 93.11% 94.21% 94.81%
Recall @ 300 proposals 95.30%

TABLE VI
OBJECT DETECTION MAP (%) ON IMAGENET VAL2 FOR INCEPTION-V2

USING DIFFERENT PRETRAINING SCHEMES.
Pretraining scheme Image Object w/o roi Object+roi

Region proposal Craft-V2 Craft-V2 Craft-V2
mAP 49.1 48.4 49.9

In the testing stage, we densely resize the longer side of
each image to 2800 × 2(−9:0) and found that it is necessary
to achieve high enough recall for objects ranging in [20, 50]
pixels for longer side.

To balance the positive and negative samples, we implement
a new multi-GPU implementation, where 50% of the GPUs
only train positive samples while the other 50% GPUs only
train the negative ones. Balancing the positive and negative
samples to 1 : 1 in training leads to 0.6% gain in recall.

We use 150 proposals for each image generated by the Craft
framework. We combine two methods to get 300 proposals for
each image and named it as Craft-v3. For the Craft-v3, the
recall on ImageNet val2 is 95.30%, and the average recall 1

is 1.59.
Use the same Inception-v2 as the baseline on ImageNet

val2, Craft-V1, V2 and V3 have mAP 46.3, 48.4, and 49.4
respectively. Compared to the Craft-v2 on ImageNet val2, the
Craft-v3 leads to 1.9% gain in final detection AP for ResNet-
269+GBD-Net.

2) Pretraining scheme: There are three pretraining schemes
evaluated in the experimental results shown in Table VI. The
Inception-v2 is used as the network for evaluation. The image
in Table VI denotes the pretraining on the 1000-class image-
centric classification task without using the box annotation
of these objects. Object w/o roi denotes the pretraining on
the 1000-class object-centric classification task using the box
annotations without including the roi-pooling at the pretraining
stage. Object+roi denotes the pretraining for the 1000-class
object-centric classification task with the box annotations and
with the roi-pooling included at the pretraining stage. Without
using the roi-pooling at the pretraining stage, the object-centric
pretraining performs worse than image-centric pretraining. The
inclusion of roi-pooling at the pretraining stage improves the
effectiveness of object centric pretraining for finetuning in
object detection, with 1.5% increase in absolute mAP.

3) The GBD structure: We evaluate the GBD structure for
different baseline models. Fig. VII shows the experimental
results for different baseline networks with the GBD structure.
The GBD structure introduced in Section III-E improves the
Inception-v2 by 3.7% in mAP for Craft-V2 and by 4.2% in
mAP for Craft-V3. With GBD and the better region proposal,
Inception-v2+GBD with mAP 53.6% is close to ResNet-152
with mAP 54% in detection accuracy. The modified GBD
structure improves the mAP by 2.5% and 2.2% for ResNet-152
and ResNet-269 respectively.

1please refer more details of the proposal average recall to [45].

TABLE VII
OBJECT DETECTION MAP (%) ON IMAGENET VAL2 FOR DIFFERENT

BASELINE NETWORKS WITH THE GBD-V2.THE + new GBD DENOTES THE
USE OF THE MODIFIED GBD STRUCTURE IN FIG. 7 AND INTRODUCED IN

SECTION III-E.
Baseline network Inception-v2 Inception-v2 ResNet-152 ResNet-269
Region proposal Craft-V2 Craft-V3 Craft-V2 Craft-V2

Pretrain Object w/o roi Object w/o roi Image Image
Without GBD 48.4 49.4 54 56.6
+ new GBD 52.1 53.6 56.5 58.8

It is mentioned in Section III-E that the magnitude of the
messages from other contextual features influences the detec-
tion accuracy. Table VIII shows the experimental results for
this influence. In the experiments, the Inception-v2 pretrained
with bounding box label without roi-pooling is used as the
baseline model. It can be seen that the scalar β has the best
performance when it is 0.1. Setting β to be 1, i.e. not scaling
messages, results in 1.6% mAP drop.

4) Baseline deep models: In this section, we evaluate the
influence of baseline deep models for the detection accuracy
on the ImageNet. Table IX shows the experimental results for
different baseline network structures. All models evaluated are
pretrained from ImageNet 1000-class training data without
using the bounding box label. None of the model uses the
stochastic depth [41] at the finetuning stage. If stochastic
depth is included, it is only used at the pretraining stage.
From the results in IX, it can be seen that ResNet-101 with
identity mapping [40] and stochastic depth has 1.1% mAP
improvement compared with the ResNet-101 without them.
Because of time limit and the evidence in ResNet-101, we
have used the stochastic depth and identity mapping for the
ResNet-269 baseline model.

5) Model ensemble: For model ensemble, we have used six
models and the averge of their scores are used as the result
for model ensemble. As shown in Table X, these models vary
in baseline model, pretraining scheme, use of GBD or not and
region proposal for training the model. Note that the region
proposal for training could be different, but they are tested
using the same region proposal. Without context, the averaged
model has mAP 66.9%. With global contextual scores, the
model has mAP 68%.

6) Components improving performance: Table XI summa-
rizes experimental results for the components that improve the
performance. The baseline ResNet-269 has mAP 56.6%. With
GBD-net, the mAP is 58.8%. Changing the region proposal
from Craft-v2 to Craft-v3 improves the mAP to 60.7%. In
the experimental results for the settings above, single-scale
testing is used, in which the shorter side of the is constrained
to be no greater than 600 and the longer is constrain to be no
greater than 700 at the testing and training stage. The multi-
scale testing introduced in Section IV-E1 provides 1.3% mAP
improvement. Left-right flip provides 0.7 mAP gain. Bounding
box voting leads to 1.3 % mAP gain. Changing the NMS
threshold from 0.3 to 0.4 leads to 0.4 mAP gain. The use
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TABLE VIII
OBJECT DETECTION MAP (%) ON IMAGENET VAL2 FOR INCEPTION-V2 USING GBD STRUCTURE WITH DIFFERENT SCALE FACTOR β IN CONTROLLING

THE MAGNITUDE OF MESSAGE.
Scale factor β = 1 β = 0.5 β = 0.2 β = 0.1 β=0 ( without GBD)

Pretrain Object w/o roi Object w/o roi Object w/o roi Object w/o roi Object w/o roi
Region proposal Craft-V3 Craft-V3 Craft-V3 Craft-V3 Craft-V3

mAP on val2 52 53.2 53.3 53.6 49.4

TABLE IX
OBJECT DETECTION MAP (%) ON IMAGENET VAL2 FOR DIFFERENT BASELINE DEEP MODELS. ALL MODELS ARE PRETRAINED FROM IMAGENET

1000-CLASS CLASSIFICATION DATA WITHOUT USING THE BOUNDING BOX LABEL. NONE OF THE APPROACHES INTRODUCED IN SECTION IV-E ARE
USED. ‘+I’ DENOTES THE USE OF IDENTITY MAPPING [40]. ‘+S’ DENOTES THE USE OF STOCHASTIC DEPTH [41].

Net structure Inception-v2 ResNet-101 ResNet-101+I+S ResNet-152 ResNet-269+I+S Inception-V5 PolyNet
[30] [27] [40], [41] [27] [46] [28]

Pretraining scheme Image Image Image Image Image Image Image
Region proposal Craft-V2 Craft-V2 Craft-V2 Craft-V2 Craft-V2 Craft-V2 Craft-V2

Mean AP 49.9 52.7 53.8 54 56.6 53.3 56.5

TABLE X
MODELS USED IN THE MODEL ENSEMBLE, GLOBAL CONTEXTUAL SCORES ARE NOT USED IN THE RESULTS FOR THESE MODELS. MODELS 1 AND 3 HAVE

THE SAME NETWORK STRUCTURE BUT DIFFERENT INITIALIZATION. SIMILARLY FOR MODELS 2 AND 4.
Model denotation 1 2 3 4 5 6
Baseline model ResNet-269 ResNet-269 ResNet-269 ResNet-269 PolyNet ResNet-101

Use GBD X X X X
Pretraining scheme Object + roi Image Object + roi Image Image Image

Region proposal for training Craft-V3 Craft-V2 Craft-V3 Craft-V2 Craft-V3 Craft-V3
Averaged model 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 1+2+3+4+5+6
Mean AP (%) 63.5 64.8 65.5 66 66.8 66.9

Loc, 9.8 

Other, 23.7 

Bg, 66.5 

Fig. 9. Fraction of high-scored false positives on ImageNet Val2 that are due
to poor localization (Loc), confusion with other objects (Other), or confusion
with background or unlabeled objects (Bg)

of context provides 1.3% mAP improvement. The final single
model result has 65% mAP on the val2 data. Ensemble of six
models improves the mAP by 3% and the final result has 68%
mAP.

F. Analysis of false positive types
Fig. 9 shows the fraction of false positives on ImageNet

Val2 that are caused by confusion with background, poor lo-
calization and confusion with other objects. It can be seen that,
the majority of false positives are from background, which is
different from the results in [35] for Pascal VOC, where the
majority of false positives are from poor localization. This is
possibly from a better region proposal used in our approach.

VI. CONCLUSION

In this paper, we propose a gated bi-directional CNN (GBD-
Net) for object detection. In this CNN, features of different

resolutions and support regions pass messages to each other
to validate their existence through the bi-directional structure.
And the gate function is used for controlling the message
passing rate among these features. Our GBD-Net is a general
layer design which can be used for any network architec-
ture and placed after any convolutional layer for utilizing
the relationship among features of different resolutions and
support regions. The effectiveness of the proposed approach is
validated on three object detection datasets, ImageNet, Pascal
VOC2007 and Microsoft COCO.
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