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Abstract—In this paper, we address the challenging problem of detecting pedestrians who appear in groups. A new approach is

proposed for single-pedestrian detection aided by two-pedestrian detection. A mixture model of two-pedestrian detectors is

designed to capture the unique visual cues which are formed by nearby pedestrians but cannot be captured by single-pedestrian

detectors. A probabilistic framework is proposed to model the relationship between the configurations estimated by single- and

two-pedestrian detectors, and to refine the single-pedestrian detection result using two-pedestrian detection. The two-pedestrian

detector can integrate with any single-pedestrian detector. Twenty-five state-of-the-art single-pedestrian detection approaches are

combined with the two-pedestrian detector on three widely used public datasets: Caltech, TUD-Brussels, and ETH. Experimental

results show that our framework improves all these approaches. The average improvement is 9 percent on the Caltech-Test

dataset, 11 percent on the TUD-Brussels dataset and 17 percent on the ETH dataset in terms of average miss rate. The lowest

average miss rate is reduced from 37 to 32 percent on the Caltech-Test dataset, from 55 to 50 percent on the TUD-Brussels dataset

and from 43 to 38 percent on the ETH dataset.

Index Terms—Part based model, discriminative model, pedestrian detection, object detection, human detection, contextual information

Ç

1 INTRODUCTION

OBJECT detection is one of the central problems in com-
puter vision. Pedestrian detection is one of the most

important topics in object detection and has attracted much
attention [3], [10], [22], [76], [83]. For research, pedestrian
detection incorporates most of the challenges characterizing
object detection—illumination change, nonrigid deforma-
tion, viewpoint change, occlusion, and intraclass appear-
ance variability. For application, pedestrian detection has
many practical applications such as automotive safety,
robotics, content based image retrieval, assistive technology
for the visually impaired, advanced human-computer inter-
face, and video surveillance. Therefore, there is considerable
interest in building automated vision systems for detecting
pedestrians [35].

Early approaches used Haar wavelets with polynomial
SVM [61], hierarchical Chamfer matching [33] and Haar-
like features with AdaBoost [79]. In the recent years, there
has been a surge of interest in pedestrian detection [10],
[16], [20], [21], [23], [30], [46], [49], [62], [67], [69], [76], [80],
[83], [85], [91]. The spectacular progress in object detection
and pedestrian detection has been achieved by new classifi-
cation approaches, features, deformation models, fast algo-
rithms and datasets.

� The investigated classification approaches include
various boosting classifiers [21], [78], [87], linear

SVM [10], [25], [82], histogram intersection kernel
SVM [49], latent SVM [30], confidence-encoded SVM
[81], probabilistic models [3], [50], multiple kernel
SVM [77], structural SVM [98], grammar models [36]
and deep models [48], [56], [57], [58], [59], [60], [70],
[96], [97].

� Features under investigation include Haar-like fea-
tures [79], edgelets [87], shapelet [67], histogram of
gradients (HOG) [10], dense SIFT [77], bag-of-words
[43], integral histogram [66], color histogram [80],
gradient histogram [99], covariance descriptor [76],
co-occurrence features [69], local binary pattern [83],
color-self-similarity [80], depth [27], [28], segmenta-
tion [23], [27], motion [11], [27], features learned
from training data [2], [54] and their combinations
[21], [23], [24], [27], [40], [43], [69], [77], [80], [83].

� In recent years, models handling deformation [30],
[31], [45], [94], [98] and appearance variation of parts
[7], [8], [94] achieved great success on object detection.

� Fast object detection algorithms often gain high
interests [4], [12], [19], [40], [90]. Fast pedestrian
detection algorithms can achieve frame-rate detec-
tion speed [19] and 100 frames per second with GPU
acceleration and geometric constraint [4].

� For object detection, the datasets in PASCAL Visual
Object Classes (VOC) Challenge [29] and the Image-
Net Large Scale Visual Recognition Challenge
(ILSVRC) are the most relevant ones [13], [39]. For
pedestrian detection, datasets such as MIT [61],
INRIA [10], ETH [28], TUD-Brussels [86], Caltech
[22], and KITTI [34] are designed with increasing dif-
ficulty and pedestrian information such as motion,
stereo, and occluded region. Surveys and perfor-
mance evaluations on recent pedestrian detection
approaches are provided in [22], [26], [35], [52], [85].
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Pedestrian detection is challenging when multiple pedes-
trians are close in space. First, a single-pedestrian detector
tends to combine the visual cues from different pedestrians
as the evidence of seeing a pedestrian and thus the detection
result will drift. As a result, nearby pedestrian-existing win-
dows with lower detection scores will be eliminated by
non-maximum suppression (NMS). For the examples in
Fig. 1, single bounding boxes cover multiple pedestrians,
which results in inaccurate bounding boxes and missed
detections. Second, when a pedestrian is occluded by
another nearby pedestrian, its detection score may be too
low to be detected. Examples are shown in Fig. 1.

On the other hand, the existence of multiple nearby
pedestrians forms some unique patterns (as shown in
Fig. 2) which do not appear on isolated pedestrians. They
can be used as extra visual cues to refine the detection
results of single-pedestrian detectors. However, such valu-
able information was not explored in existing works. The
motivations of this paper are two-folds:

1) Sociologists find that nearby pedestrians walk in
groups and show particular spatial patterns [37],
[51].

2) From a computer vision viewpoint, these 3D spatial
patterns of nearby pedestrians can be translated into
unique 2D visual patterns resulting from the per-
spective projection of 3D pedestrians to 2D images.
These unique 2D visual patterns are helpful for esti-
mating the configuration of multiple pedestrians.

They inspire us to design a two-pedestrian detector to
capture these unique visual patterns. A two-pedestrian win-
dow found by a two-pedestrian detector can then guide the
detection of each pedestrian in this window. Taking the first
row in Fig. 2 as an example, when pedestrians walk side by
side, they form the shoulder-to-shoulder visual pattern. Tak-
ing pedestrians in the second row as another example, the
right torso of pedestrians on the left are occluded by the
pedestrians on the right. One-pedestrian detectors are not
able to learn these two types of visual patterns. Instead,
these visual patterns can be employed by the two-pedestrian
detector. Then the two-pedestrian detection results are used
to reinforce the detection probabilities for the two pedes-
trians. In Fig. 2, when the probabilities of the two pedes-
trians increase, they will not be suppressed by NMS in the
drift example and will be found in the occlusion example.

The contributions of this paper are as follows:

1) A two-pedestrian detector is learned to effectively
capture the unique visual patterns appearing in
nearby pedestrians. The training data is labeled as
usual, i.e., a bounding box for each pedestrian. The
spatial configuration patterns of nearby pedestrians
are learned and clustered into different appearance
patterns. In the two-pedestrian detector, each sin-
gle pedestrian is specifically designed as a part,
called pedestrian-part. As shown in Fig. 9, the filter
of a pedestrian-part is different from and comple-
mentary to a one-pedestrian detector, since it is
learned under a specific two-pedestrian configura-
tion and under the guidance of the two-pedestrian
detector as contextual constraints.

2) A new probabilistic framework is proposed to model
the configuration relationship between results of
two-pedestrian detection and one-pedestrian detec-
tion. With this framework, two-pedestrian detection
results are used to refine one-pedestrian detection
results.

3) A way of reducing the unaffordable computational
complexity of the probabilistic framework to accept-
able computational complexity.

The new framework can easily integrate with any exist-
ing one-pedestrian detector. With a fast computation
approach, it only adds small computing load on the top of
one-pedestrian detectors. Twenty-five state-of-the-art one-
pedestrian detectors are evaluated on three widely used
public datasets: Caltech, TUD-Brussels and ETH. They all
achieve significant improvements by integrating with our
framework. The lowest miss rate is improved from 37 to 32
percent on the Caltech-Test dataset, from 55 to 50 percent
on the TUD-Brussels dataset and from 43 to 38 percent on
the ETH dataset.

2 RELATED WORK

Context is gaining more and more attention in object detec-
tion. Researches on visual cognition, computer vision and
cognitive neuroscience have shown that the ability in recog-
nizing objects is affected by the contextual information like

Fig. 1. Examples of missed detections caused by drift and occlusion with
the state-of-the-art detector in [30]. Aided by a two-pedestrian detector,
the missed pedestrians are detected. The thresholds of both approaches
are fixed at one False Positive Per Image (FPPI). Best viewed in color.

Fig. 2. Visual patterns learned from training data with the HOG feature
(first column) and examples detected from testing data (remaining col-
umns). In the first row, pedestrians walk side by side. In the second row,
pedestrians on the left are occluded by pedestrians on the right. Our
two-pedestrian detector captures visual cues which cannot be learned
with a one-pedestrian detector.
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non-target objects, object size and location, consistency in
object and contextual scenes. A review of context in object
recognition is provided in [55]. The context investigated in
previous works includes regions surrounding objects [10],
[16], [32], object-scene interaction [17], and the presence,
location, orientation and size relationship among objects [3],
[14], [15], [16], [17], [32], [60], [62], [68], [72], [74], [88], [91],
[93], [95]. They usually employ context cues in two steps: 1)
single-object detection results are obtained separately; and
2) the relationship between an object and its context is mod-
eled to refine the detection result. These approaches can be
considered as two categories:

1. Assemble detected parts into detected objects. Multi-
ple objects may inter-occlude one another. By consid-
ering objects as consisting of parts, many approaches
consider multiple objects detection as an assembly
problem [3], [41], [42], [88], [89], [91]. These
approaches are based on the observation that
one part, e.g. head-shoulder, only belongs to one
instance, e.g., human. The joint part-combination of
multiple objects is adopted in [3], [41], [42], [43], [47],
[71], [87], [89]. In these approaches, the existence of
an object in a image suppresses the existence of an
object nearby. Therefore, these approaches are not
able to model the following observation: the evi-
dence of seeing an object should be able to amplify
the confidence of seeing another object nearby. To
take this observation into account, recently Yan et al.
[91] include the context of objects in assembling
multiple pedestrian detection results. In their
approach, the context is the location and size differ-
ence between two pedestrians.

2. Refine the detection of one object by the detection of
other objects. In this category, there are two sub-
categories.

In the first sub-category, the descriptions of other
objects, e.g., cars or bicycles, in other windows are used
as context features to help classify the existence of specific
object class, e.g. person, in a specific window [14], [15],
[16], [17], [32], [62], [72], [95]. Divvala et al. [17] did an
empirical study of contexts such as object presence, loca-
tion and spatial support. These contexts are used as fea-
tures and concatenated with appearance features for
training a logistic regression classifier. These contexts
improves the average precision from 22:4 percent to 23:9
on Pascal VOC 2008. Desai et al. [15] grouped the spatial
layout of other objects into a 7-dimensional features for
each class. The seven-dimensional features are near, far,
above, on-top, next-to, overlap, below. The spatial layout
contexts improves the average precision from 26 to 27:2
percent on Pascal VOC 2007. Desai and Ramanan [14]
models the spatial relationship between human pose and
interacting objects and use them for detecting actions,
poses, and objects. Yao and Fei-fei [95] studied the strong
contextual information between human and the objects in
sports, e.g., cricket bat, cricket ball. They consider the
location, size and orientation as the context for detecting
objects and estimating human pose. In their approach,
objects are involved in human-object interaction and
human activity class is further used for object detection

and human pose estimation. Song et al. [72] considered
the context as the existence probability of certain object
class in each image. For each class, the existence probabil-
ity is measured by classification score for object classifica-
tion and measured by highest detection score for object
detection in [72]. The existence probability contexts
improves the average detection precision from 34:5 to
36:8 percent on Pascal VOC 2010. Galleguillos et al. [32]
considered different levels of context such as pixel, region
and object. In this approach, the pixel and region context
is combined with appearance features for single object
detection and then object level interaction is combined
using a conditional random field. With the segmentation
information and multi-kernel large margin nearest neigh-
bor approach, the contextual information improves the
average precision from 26 to 33 percent on Pascal VOC
2007. Ding and Xiao considered the detection score
of windows surrounding current window as the context
feature in [16].

In the second sub-category, geometric constraints are
used for pedestrians and cars [38], [62]. Large improvement
is observed using geometric constraints. Objects of the same
class are assumed to have similar height. The context is con-
sidered as the difference between the current window size
and the window size estimated from scene geometry in [38],
[62]. The estimated window size is obtained by putting
objects in perspective view and assuming that all objects of
interest rest on the ground plane.

In these approaches, the visual cue of multiple overlap-
ping objects is captured by separate single object detectors.
In these approaches, the visual cue of seeing multiple
objects is from the single object detectors. The global visual
cue of multiple nearby objects caused by inter-occlusion
and spatial constraint is not explored. In this paper, we will
explore the unique visual cue of multiple pedestrians by
designing a multi-pedestrian detector.

Deformable part based model (DPM) is used in [44], [65],
[68], [74], [75] to learn contextual cues. The approach in [44]
only considers one contextual region with the largest score
in an image, even if that image contains multiple persons.
So it cannot model multiple pairs of pedestrians in an
image. Similarly, the visual phrases in [68] cannot model
multiple pairs of pedestrians in a spatial region.

The most closely related works are the approaches in
[65], [74], [75], which are the only other two-pedestrian
detectors. The approach in [65] learns both single-object
occlusion patterns and double-object occlusion patterns
using the 3D object information and labeled occlusion
patterns in the training set. Different from our approach,
the approach in [65] directly used a double-object detector
to detect a pair of neighboring objects or a single object,
but did not integrate its result with a single-object detec-
tor, which is a key contribution of our paper. 3D informa-
tion is required for learning the double-object detector in
[65] while only 2D bounding box information is required
by our approach. Two-pedestrian detectors trained by
DPM are proposed in [74], [75] for detecting inter-
occluded pedestrians. Our work is different from [74],
[75] in five aspects: 1) the manually labeled segmentation
maps of pedestrians are required in the training data in
[74], [75] in order to infer occlusion patterns, while our

OUYANG ET AL.: SINGLE-PEDESTRIAN DETECTION AIDED BY TWO-PEDESTRIAN DETECTION 3
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work only requires the bounding box information of
pedestrians. 2) The pair of pedestrians in the dataset
investigated in [74], [75] have small variation in window
sizes and 3D spatial locations while we consider more
general and natural cases in which the pair of pedestrians
have large variation in window sizes and 3D spatial loca-
tions. 3) The approach in [74], [75] use NMS to reject the
strong overlap between the two-pedestrian detection
results and the one-pedestrian detection results (incom-
patible relationship) while this paper uses a probabilistic
framework that favors the strong overlap (compatible
relationship). 4) The experiment is done on more specific
datasets in [74], [75] while our experimental results are
done on more general pedestrian detection datasets that
complement the ones in [74], [75]. 5) The experiment in
[74], [75] only shows the effectiveness for a one-pedes-
trian detection approach while our experiment shows the
effectiveness for 25 one-pedestrian detection approaches.

3 FRAMEWORK OVERVIEW

Denote an image by I, and let z1 be the configuration of an
object denoted obj1. pðIjz1Þ is the likelihood of seeing I given
obj1 with configuration z1 ¼ ðl1; w1Þ. z1 is a vector that con-
tains the locations, orientations and scales of the whole
object and its parts. w1 ¼ ðx1; y1; s1Þ is the detection window
at location ðx1; y1Þ with size s1. l1 is a vector that represents
the locations and sizes of parts if the single-object detector
is the DPM in [30]. Object detection needs to compute the
posterior distribution, pðz1jIÞ. Since pðIÞ is assumed to be

constant, the posterior is represented as pðz1jIÞ ¼ pðz1;IÞ
pðIÞ /

pðz1; IÞ under the Bayes’ rule. Considering multiple nearby
pedestrians, we have

pðz1; IÞ ¼ pðI; z1jc ¼ 1Þpðc ¼ 1Þ þ
XC
c¼2

X
zc2Zc

pðI; z1; zcjcÞpðcÞ; (1)

where pðcÞ is the prior of the case when there are c nearby
objects, zc denotes the configuration of c nearby objects, Zc

denotes the set of all configurations for zc. c (c ¼ 1; . . . ; C)
nearby objects are considered and the visual cues of zc are
captured as the context to assist the estimation of z1.

An overview of our implementation is shown in Fig. 3.
In our implementation, pðI; z1jc ¼ 1Þ is estimated from a one-
pedestrian detector. pðIjz1; zc; cÞ, which is detailed in
Section 4.2, is the likelihood of seeing I given the configura-
tions z1; zc, and c. pðz1; zcjcÞ, which is introduced in
Section 4.3, models the joint probability of the one-pedestrian
configuration z1 and the c-pedestrian configuration zc.

4 DESIGN OF THE TWO-PEDESTRIAN DETECTOR

The location and size variation of nearby pedestrians results
in the appearance variation of these pedestrians. On the
other hand, sociologists have found that pedestrians walk-
ing together show a few particular spatial patterns [51].
Therefore, we handle the appearance variation using a mix-
ture of DPM. We empirically show that such approximation
is reasonable (Fig. 4) and can improve pedestrian detection
performance (Section 6).

4.1 Considering at Most Two Pedestrians

This paper focuses on the case when c ¼ 1 and c ¼ 2
because of several considerations. 1) The frequency of two
pedestrians overlapping with each other (about 60 percent
on the ETHZ dataset, 50 percent on the TUD-Brussels data-
set, and 30 percent on the Caltech Testing dataset) is much
larger than the frequency of more than two pedestrians
(<6% on these three datasets). 2) Our approach with two-
pedestrian detector can be naturally extended for c-pedes-
trian detector. 3) Pair-wise relationship is a concise repre-
sentation of the relationship among cð> 2Þ pedestrians. 4) It
is computationally expensive when c > 2.

When C ¼ 2, the pðz1; IÞ in (1) is as follows:

pðI; z1jc ¼ 1Þpðc ¼ 1Þ þ
X
z22Z2

pðI; z1; z2jc ¼ 2Þpðc ¼ 2Þ; (2)

where Z2 denotes the set of all configurations for z2. The
pðI; z1jc ¼ 1Þ in (2) is obtained from a 1-pedestrian detector.
The second term in (2) is the evidence from a two-pedes-
trian detector, which is used as the extra information to
refine the one-pedestrian detection result. The priors pðc ¼
1Þ and pðc ¼ 2Þ in (2) are used as the weights to balance the
one-pedestrian detection result and the evidence from two-
pedestrian detection. These weights are obtained by cross-
validation. In our implementation, we have z2 ¼ ðl2; w2;
m2Þ. Since the configurations of two pedestrians are com-
plex, we assume that they are sampled from a mixture
model and m2 is the mixture type of configuration z2.
Details on the mixture model m2 and its detection window
w2 are provided in Section 4.2. w2 ¼ ðx; y; sÞ represents the
two-pedestrian detection window at location ðx; yÞwith size
s, and l2 represents the locations and sizes of parts in w2. In
the remaining of this paper, we drop the conditional term
c ¼ 2 to simplify notations because it is implicitly assumed
by l2, m2 and w2. We have the following for the second term
in (2) by taking out pðc ¼ 2Þ, replacing z2 with ðl2; w2;m2Þ,

Fig. 3. Overview of our implementation of the framework introduced in
Eq. (1).
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and then using the sum-product rule:

X
z22Z2

pðI; z1; z2jc ¼ 2Þ

¼
X

l2;w2;m2

pðI; z1; l2; w2;m2Þ

¼
X

l2;w2;m2

pðI; z1; l2jw2;m2Þpðw2jm2Þpðm2Þ

¼
X
m2

pðm2Þ
X
w2

pðw2jm2Þ
X
l2

pðI; z1; l2jw2;m2Þ:

(3)

The pðI; z1; l2jw2;m2Þ in (3) is the joint distribution of
image I, configurations z1 and l2 given mixturem2 and win-
dow w2. An overview of this implementation is shown in
Fig. 5. The one-Pedestrian, two-pedestrian and pedestrian-
part detection scores in Fig. 5 are integrated into the evi-
dence to one-pedestrian configuration pðI; z1; l2jw2;m2Þ,
which is detailed in Section 4.2. The evidence to one-pedes-
trian configuration in Fig. 5 is then added to one-pedestrian
detection results using (1) to obtain the refined detection
result in Fig. 5.

4.2 Mixture of DPM for Two-Pedestrian Detection

In order to learn the mixture typem2 ¼ 1; . . . ;M, the config-
uration space of z2 is divided into M ¼ S �A clusters using
the following two steps.

1) The two pedestrians form a two-pedestrian bounding
box. The positive training samples are divided into A
groups according to their aspect ratios, i.e., the height
divided by the width of the bounding box. Fig. 6
shows the results of dividing the INRIA training sam-
ples into A ¼ 3 groups.

2) Each aspect ratio group is further divided into S clus-
ters. The relative location and size between the two
pedestrians are used as features for clustering. Many
clustering approaches can be adopted. We empirically
evaluate the mixture of Gaussian (MoG), spectral clus-
tering and K-means in the experiments. Fig. 7 shows
the clustering results for A ¼ 3 and S ¼ 3. Fig. 8 shows
the detectors learned for the nine clusters using MoG.

Fig. 4. The configurations of two-pedestrian samples from the INRIA
dataset together with four sample images. In each sample, the left
pedestrian is considered as the anchor. X-axis: the horizontal distance
between the two pedestrians divided by the width of the left bounding
box. Y-axis: the size of the right pedestrian divided by the size of the left
pedestrian in log scale. Samples are not uniformly distributed in the con-
figuration space. A single detector cannot handle the large appearance
variation. It is reasonable to cluster these samples to train a mixture
model.

Fig. 5. Use two-pedestrian detection result to refine one-pedestrian detection. The detection scores of one-pedestrian �1, two-pedestrians �2 and
pedestrian-parts �p are integrated as the evidence to one-pedestrian configuration z1. This evidence is added to the result obtained with the one-
pedestrian detector. Examples in the left column are obtained at 1 FPPI on the ETH dataset. Although only activations in one scale are shown, two-
pedestrian activations at one scale are able to affect a one-pedestrian activation of a closely related scale. This figure is best viewed in color.

OUYANG ET AL.: SINGLE-PEDESTRIAN DETECTION AIDED BY TWO-PEDESTRIAN DETECTION 5
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It can be seen that each detector captures a specific con-
figuration relationship between the two pedestrians.

After the clustering step, the positive training samples in
a cluster and all the negative samples are used to train a
DPM [30]. Each cluster corresponds to a mixture type m2 in
(3). The two-pedestrian model for a mixture type m2 con-
sists of one root filter and five deformable part filters with
deformation under the star model learned with the Latent
SVM in [30]. The two-pedestrian bounding box is used to
train the root filter. Three parts are greedily selected and ini-
tialized from the root filter using the approach in [30].
Besides, we add two extra parts that correspond to the two
pedestrians in a two-pedestrian training sample. They are
called pedestrian-parts. The anchor locations and sizes of
the two pedestrian-parts are obtained from the average
locations and sizes of the training samples in this cluster. In
order to transfer the knowledge of the one-pedestrian detec-
tor to the two-pedestrian detector, the initial filters for the
two pedestrian-parts are obtained from the root filter of the
one-pedestrian detector. With the positive samples and ini-
tial part filters defined, the DPM with Latent SVM and
HOG feature in [30] is then used to train the two-pedestrian
detector. The learned models using MoG are shown in
Fig. 8. The configuration l2 contains the sizes and locations
of parts. Since the pedestrian-parts are explicitly modeled
as parts in the two-pedestrian model, the size and location

of each pedestrian in the two-pedestrian window are also
inferred by DPM at the detection stage. This is the key to
build the relationship between the two-pedestrian detection
result and the one-pedestrian detection result.

pðm2Þ in (3) could be estimated from the training set. But
it could be biased because of insufficient training data. It is
assumed to be uniform in our implementation. We tried
estimating pðm2Þ from training data but did not observe
improvement. Given the mixture model m2, pðw2jm2Þ in (3)
can be densely sampled from the image in a sliding window
manner with varying window sizes.

To represent the relationship between the pedestrian-
part and the single-pedestrian detection result, we intro-
duce a hidden variable h 2 f0; 1g. h ¼ 0when the left pedes-
trian-part in l2 is considered to match the single pedestrian
with configuration z1, and h ¼ 1 when the right pedestrian-
part matches the single pedestrian. With h included, we
have the following for the pðI; z1; l2jw2;m2Þ in (3):

Fig. 6. The number of samples (Y-axis) with respect to the aspect ratio
(X-axis) measured by height divided width (left) and division of the INRIA
training samples in Fig. 4 into A ¼ 3 groups according the aspect ratio of
two-pedestrian bounding box (right). Best viewed in color.

Fig. 7. Division of the INRIA training samples in each aspect ratio group
into S ¼ 3 clusters (best viewed in color). Each column corresponds to
an aspect ratio. First row: result of Gaussian mixture model. Second:
result of spectral clustering in [53]. Third row: result of K-means.

Fig. 8. Two-Pedestrian detectors learned for different clusters. Column
1: root filter; Column 2: three part filters found from root filter; Column 3:
two pedestrian-part filters; Column 4: examples detected by the detec-
tors in the same rows. Red rectangles are two-pedestrian detection
results. Blue rectangles indicate pedestrian-part locations. Best viewed
in color.
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pðI; z1; l2jw2;m2Þ ¼
X
h

pðI; z1; l2; hjw2;m2Þ

¼
X
h

pðI; z1; l2jh; w2;m2Þpðhjw2;m2Þ; (4)

where pðhjw2;m2Þ ¼ 0:5; z1 ¼ ðl1; w1Þ;
pðI; z1; l2jh;w2;m2Þ

¼ pðI; l1jw1; l2; h; w2;m2Þpðw1jl2; h; w2;m2Þpðl2jw2;m2Þ
(5)

and we suppose pðl2jw2;m2; hÞ ¼ pðl2jw2;m2Þ. The right-
hand-side terms in (5) are enumerated as follows:

� pðw1; jl2; h; w2;m2Þ models the relationship between
the one-pedestrian configuration z1 and two-pedes-
trian configuration z2 and will be detailed in Section
4.3. This is implemented by matching z1 with z2.

� Consider the pðI; l1jw1; l2; h; w2;m2Þ and pðl2jw2;m2Þ
in (5) together, we have:

pðI; l1jw1; l2; h; w2;m2Þpðl2jw2;m2Þ
/ f1ðI; l1;w1ÞfpðI; l2; w2;m2; hÞ
f2;1ðI; l2; w2;m2Þf2;2ðl2;w2;m2Þ

¼ f1ðI; l1;w1ÞfpðI; l2; w2;m2; hÞf2ðI; l2;w2;m2Þ
¼ �1�p�2;

(6)

where pðl2jw2;m2Þ / f2;2ðl2;w2;m2Þ, pðI; l1jw1; l2; h;
w2;m2Þ is approximated by the products of three
terms, f1ð�Þ, fpð�Þ, and f2;1ð�Þ, subject to normaliza-

tion factor. f1ð�Þ is from one-pedestrian detector,
fpð�Þ is from the pedestrian-part, and f2;1ð�Þ is from
the two-pedestrian detector. The �1, �p, and �2 in (6)
are illustrated as follows:
– �1 ¼ f1ðI; l1;w1Þ is from one-pedestrian detection

score. For example, f1ðI; l1;w1Þ can be imple-
mented using the DPM in [30] as follows:

�1 ¼ f1ðI; l1;w1Þ ¼ eF
T
a c1ðI;l1ÞþFT

d
cdðl1�a1Þ; (7)

where Fa and Fd are linear weights learned from
SVM, c1ðI1; l1; w;mÞ represents appearance fea-

tures, a1 is the anchor position of parts and FT
d

cðl1 � a1Þ calculates the cost of deforming parts
from anchor a1 to location l1.

– �p ¼ fpðI; l2; w2;m2; hÞ is from the pedestrian-
part score, which is used as the extra information
to refine one-pedestrian detection results.

– �2 ¼ f2ðI; l2;w2;m2Þ is from the two-pedestrian
detection score obtained by DPM. And we have:

�2 ¼ f2ðI; l2;w2;m2Þ
¼ f2;1ðI; l2; w2;m2Þf2;2ðl2;w2;m2Þ
¼ e

FT
2;1

c2;1ðI;l2ÞeF
T
2;2

c2;2ðl2�a2Þ;

(8)

where F2;1 and F2;2 are linear weights learned
from training data, c2;1ðI; l2; w;mÞ represents

appearance features, a2 is the anchor position of

parts and FT
2;2cðl2 � a2Þ calculates the cost of

deforming parts from anchor a2 to location l2.
In Fig. 5, the one-pedestrian score map is from �1, the two-
pedestrian score map is from �2, and the pedestrian-part
score maps are from �p.

4.3 Modeling the Relationship between Two- and
One-Pedestrian Detection Results

With the pedestrian-parts designed in the two-pedestrian
detector, the relationship between two- and one-pedes-
trian detection results is implemented by matching the
pedestrian-part in the two-pedestrian detector with the
one-pedestrian detection result. For a one-pedestrian
activation, two-pedestrian activations at different scales
affect it through pðw1jl2; w2; m2; hÞ in (4), which is a
Gaussian distribution:

pðw1jl2; w2; m2; hÞ ¼ ð2pÞ�3
2jAj12e� 1

2s1 �s1ðw1�uÞTAðw1�uÞ
; (9)

where A is the precision matrix estimated from training
samples for each mixture m2, w1 ¼ ðx1; y1; s1Þ is the location
and scale of z1 normalized by the scale s1, u ¼ ðx2;h;

y2;h; s2;hÞ is the location and scale of the pedestrian-part h in
l2 normalized by the size s1. pðw1jl2; w2;m2; hÞ ¼ 0 when the
overlap between the one-pedestrian window and the pedes-
trian-part is smaller than 0.5. pðw1jl2; w2;m2; hÞ is the largest
if the one-pedestrian detection window w1 perfectly
matches the pedestrian-part.

5 REDUCTION OF COMPUTATIONAL COMPLEXITY

Suppose the number of possible configurations for w1 in
z1 ¼ ðw1; l1Þ is Lc. The number of possible configurations for

the five parts in l2 is OðL5
cÞ and the number of possible con-

figurations for w2 is OðLcÞ. The number of possible configu-
rations for m2 is M. Overall, the computational complexity

of (3) is OðML7
cÞ. For example, a 640� 480 image has

Lc > 40;000 considering sliding windows for different

scales. The computation will be greater than M � 1032. The

computation ability of 4G Hz CPU is about 2� 1010 opera-
tions per second. Therefore, direct computation of (3) is
unaffordable and a fast approach is required.

Fig. 9. The single-pedestrian root filter in [30] and our pedestrian-part fil-
ter of mixture type 7.
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The first step for faster speed is to assume that the config-
uration prior f2;2ðl2;w2;m2Þ is sharply peaked around value
~l2 so that the summation in (3) can be approximated with
maximization as follows:X

l2;w2;m2

pðI; z1; l2; w2;m2Þ

�
X

h;w2;m2

max
l2

pðw2;m2Þ�1fpðI; l2; w2;m2; hÞ

f2ðI; l2;w2;m2Þpðw1jl2; w2;m2; hÞpðhÞ;

(10)

where �1 ¼ f1ðI; l1;w1Þ. Although with the approximation
above, the computational complexity is still not changed

because the best configuration ~l2 is dependent on w1. Since

f2;2ðl2;w2;m2Þ is supposed to be sharply peaked around ~l2,

pðw1jl2; w2;m2; hÞ is considered as being non-zero only

when l2 ¼ ~l2. Then pðw1jl2; w2;m2; hÞ is moved out of the
maximization operation to haveX

h;w2;m2

max
l2

�
pðw2;m2Þ�1fpðI; l2; w2;m2; hÞ

� f2ðI; l2;w2;m2Þpðw1jl2; w2;m2; hÞpðhÞ
�

�
X

h;w2;m2

�
pðw2;m2ÞpðhÞ�1fpðI;~l2; w2;m2; hÞ

� f2ðI;~l2;w2;m2Þpðw1j~l2; w2;m2; hÞ
�

¼
X

h;w2;m2

pðw2;m2ÞpðhÞ�1
~�p
~�2pðw1j~l2; w2;m2; hÞ;

where ~l2 ¼ argmax
l2

fpðI; l2; w2;m2; hÞf2ðI; l2;w2;m2Þ;

~�p ¼ fpðI;~l2; w2;m2; hÞ;
~�2 ¼ f2ðI;~l2;w2;m2Þ:

(11)

The search for best configuration of l2 in (11) is the search of
the best part location in two-pedestrian detector, which is
independent of the single detector configuration z1. This
search can be efficiently solved by the distance transform
[31], which is also used for DPM in [30] with computational
complexity OðKLcÞ for all candidate windows w, where K
is the number of parts. Therefore, the argmaxl2fpðI; l2; w2;

m2; hÞf2ðI; l2;w2;m2Þ in (11) has computational complexity
OðLfLc þKLcÞ, where Lf is the length of features, LfLc is
used for obtaining the linear SVM filtering results on visual
features like HOG, KLc is used for obtaining the best con-

figuration ~l2 for all windows with mixture type m. Since
K � Lf , OðLfLc þKLcÞ � OðLfLcÞ. In summary, the com-

putational complexity in obtaining ~l2; ~�p and ~�2 is OðLfLcÞ
if the two-pedestrian detector is computed in sliding win-
dow manner.

The overall implementation is as follows:

pðz1; IÞ � pðc ¼ 1ÞpðI; z1jc ¼ 1Þ
þ pðc ¼ 2Þ

X
h;w2;m2

pðw2;m2ÞpðhÞ�1
~�p
~�2pðw1j~l2; w2;m2; hÞ;

(12)

where �1 and pðI; z1jc ¼ 1Þ are from the single pedestrian
detection, pðw2;m2Þ is sampled in sliding window for all

mixture types, pðhÞ ¼ 0:5, ~�p, and ~�2 are given in (11) and

illustrated after equation (6), pðw1j~l2; w2;m2; hÞ is given in
(9). By default, pðc ¼ 1Þ ¼ 1=3 and pðc ¼ 2Þ ¼ 2=3. Tuning
this parameter on the Caltech and TUD datasets, the aver-
age miss rate is further reduced less by than 1 percent. On
ETHZ, it is reduced by 2 percent by setting pðc ¼ 1Þ ¼ 0:4
and pðc ¼ 2Þ ¼ 0:6. We resize the 1-pedestrian bounding
box into 1:3 for width:height.

The computation related to the two-pedestrian detector
can be further reduced by cascading two-pedestrian
detector after the one-pedestrian detection results is
obtained. Denote the number of candidates for z1 by
Cand1, and the number of candidate windows w2 for M
mixtures by Cand2. The procedure and computational
complexity of computing (11) for all configurations of z1
is as follows:

� Step 1. Obtain the one-pedestrian detection result,
which is used for pðI; z1jc ¼ 1Þ and �1 in (12).

– Analysis. OðLcÞ operations are required in this
step. Only Cand1 candidate windows, which are
detected by the single-pedestrian detector, are used
for the next steps.

� Step 2. Obtain the two-pedestrian detection results,
which is used for ~�p and ~�2 in (11).

– Analysis. We assume that if two nearby pedes-
trians exist, at least one pedestrian will be detected
by the single-pedestrian detector around this region.
With this assumption, the two-pedestrian detector
can be evaluated only around Cand1 one-pedestrian
candidate windows to save computation. OðCand1Þ
operations are required in this step.

� Step 3. For each one-pedestrian candidate z1, com-
pute (11) for Cand2 two-pedestrian candidate win-
dows using the results obtained in Step 1 and Step 2.

– Analysis. In practice, most �1 and ~�2 are very
close to 0, i.e. Cand1; Cand2 � Lc. This allows us to

compute pðw1j~l2; w2;m2; hÞ only for Cand1Cand2
non-zero �1 and ~�2. With the terms computed,
the computational complexity for summing up them
w.r.t. w1; h; w2 and m2 in (11) is OðCand1Cand2Þ by
enforcing sparsity on one-pedestrian and two-pedes-
trian candidate windows. OðCand1Cand2Þ opera-
tions are required in this step.

Take our experiment on the Caltech dataset [22] as an
example, we have Lc > 40;000, Cand2 ¼ 20, Cand1 ¼ 140
and Cand1Cand2 ¼ 2;800 per image on average.

6 EXPERIMENTAL RESULTS

The proposed framework is evaluated on three public
datasets: Caltech [22], TUD-Brussels [86] and ETH [28].
We use the modified HOG [30] as feature and the DPM in
[30] to learn the two-pedestrian detector. HOG+DPM
is used because it is off-the-shelf, open-source, and
widely used. Since the detection scores of two-pedestrian
detector and one-pedestrian detector are considered
as input, the framework keeps unchanged if other detec-
tion models or features are used for one-pedestrian detec-
tor or two-pedestrian detector. Existing pedestrian
detection results can be directly used as the input of our
framework.

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. X, XXXXX 2015
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The one-pedestrian detection approach in [30] used the
same feature and DPM as our two-pedestrian detector. It is
denoted as LatSVM-V2 in the experimental results. Our
framework using LatSVM-V2 as the one-pedestrian detector
is denoted as LatSVM-V2+Our in the experimental results.
Other single-pedestrian detectors trained with different
models, features and datasets are also integrated with our
two-pedestrian detector and compared in Section 6.2. The
detection windows of the LatSVM-V2 and LatSVM-V2-E are
obtained by running the authors’ code. The detection win-
dows of other approaches are obtained from Dollar’s web-
page,1 NMS is used for these approaches before they are
aided by the two-pedestrian detector.

The labels and evaluation code provided by Doll�ar et al.
online are used for evaluation following the criteria pro-
posed in [22]. As in [22], the log-average miss rate is used to
summarize the detector performance, which is computed
by averaging the miss rate at nine FPPI rates evenly spaced
in the log-space in the range from 10�2 to 100. In the experi-
ments, we evaluate the performance on the reasonable subset
of the datasets, which is the most popular portion of the
datasets. It consists pedestrians of 	 50 pixels in height, and
less than 35 percent occluded.

6.1 Preparation of Two-Pedestrian Training Data

Since there is no two-pedestrian detection training dataset,
we construct it based on the INRIA training dataset [10] as
follows:

1) All the negative images are used for negative samples.
2) Because most pedestrians labeled in INRIA are iso-

lated pedestrians, this results in a very small number
of two-pedestrian positive samples (656). We labeled
more pedestrians in the positive images. The number
of positive one-pedestrian samples increases from the
original 1,237 to 2,738. The number of positive two-
pedestrian samples increases from the original 656 to
4,398.2

3) If the bounding boxes of two pedestrians overlap, the
bounding box that exactly covers the two pedestrians
is considered as the label of the two-pedestrian posi-
tive sample.

Once the two-pedestrian detection model is learned from
this training set, it is fixed and tested on other datasets.

6.2 Experimental Results on Caltech,
TUD-Brussels and ETH

First of all, we compare with the approach in [30] which
used the same feature and learning model as our two-
pedestrian detector. Compared with LatSVM-V2, our
approach has 10 percent (from 51 to 41 percent), 7 and 5 per-
cent log-average miss rate improvement on the datasets
ETH,3 TUD-Brussels and Caltech-Test respectively. In order
to exclude the factor of using a larger training set, we also
train the 1-pedestrian detector with DPM on our extended
INRIA dataset described in Section 6.1. It is denoted by

LatSvm-V2-E. By combining with LatSVM-V2-E, our
approach (LatSvm-V2-E+our) has 9, 7 and 5 percent log-
average miss rate improvement over LatSVM-V2-E on the
datasets ETH, TUD-Brussels and Caltech-Test respectively.
Considering LatSvm-V2 and LatSvm-V2-E on the three
datasets, the inclusion of larger training set does not influ-
ence the relative performance rank of DPM compared with
other approaches, e.g., FPDW and Pls.

We also investigate other one-pedestrian detectors and
integrate them with our two-pedestrian detector in this
experiment. All the approaches evaluated on the Caltech,
TUD-Brussels and EHTZ datasets in [22] are evaluated in
this experiment. We resize the one-pedestrian bounding
box of these approaches into 1:3 for width:height. These
approaches are VJ [79], Shapelet [67], PoseInv [46], LatSvm-
V1 [30], LatSvm-V2 [30], HikSVM [49], HOG [10], MultiFtr
[85], HogLbp [83], Pls [69], MultiFtr+CCS, MultiFtr+Motion
[80], FPDW [20], ChnFtrs [21]. We also include recent
approaches such as MultiResC [62], Rorei [5], MOCO [9],
Crosstalk [19], MT-DPM [92], ACF [18], and ConvNet [70].
MultiResC, MOCO, ACF-Caltech, MT-DPM, MT-DPM
+Context, and ACF+SDt are only evaluated on the Caltech-
Test dataset, because their results on ETH and TUD-Brus-
sels are not available. For one-pedestrian detection results,
the range of detection score s has large variation for differ-
ent approaches. s is normalized to snorm as follows:

snorm ¼ sða � sþ bÞ; a ¼ 6=smax; b ¼ �0:6a; (13)

where sðxÞ ¼ 1=ð1þ e�xÞ is the logistic function, smax is the
maximum detection score of the first 100 images for each
approach. snorm is used as pðI; z1jc ¼ 1Þ in (1). This normali-
zation was chosen empirically and the same for all the
methods. Tuning them per method can improve perfor-
mance but is not investigated in the final results. Fig. 14
shows the results on the three datasets. Fig. 10 shows the
improvement of our framework for each of these
approaches on the three datasets. Our framework signifi-
cantly improves all the state-of-the-art pedestrian detectors
by integrating with them. On the ETH dataset, it is reported
that LatSvm-V2 has the best performance among the 14
state-of-the-art approaches evaluated in [22]. The average
miss rate for LatSvm-V2 is 51 percent. By integrating with
our framework, 10 algorithms outperform LatSVM-V2 and
the best performing one (LatSVM-V2+Our) reaches the
average miss rate of 41 percent. The current best performing
approaches on the Caltech-Test dataset is the ACF+SDt in
[18] with the motion feature in [63], which has an average

Fig. 10. Miss rate improvement of the framework for each of the state-of-
the-art one-pedestrian detectors on Caltech-Test (left), TUD-Brussels
(middle) and ETH (right). X-axis denotes the miss rate improvement.

1. www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
2. Publicly available on www.ee.cuhk.edu.hk/~wlouyang/proj-

ects/ouyangWcvpr13MultiPed
3. Demo results on https://www.youtube.com/watch?

v=0JTg93ur52A
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miss rate 37 percent. With our framework, ACF+SDt+Our
is improved from 37 to 32 percent. With our framework,
the current best performing approach on the TUD-Brussels
dataset, i.e. MultiFtr+Motion, is improved from 55 to
50 percent.

Fig. 12 shows the effect of different clustering app-
roaches, i.e., mixture of Gaussian, K-means and spectral
clustering, for obtaining the mixture type m of the two-
pedestrian detector on the algorithms evaluated in [22]. The
three approaches achieve similar improvement. Spectral
clustering performs slightly better than the other two. When
spectral clustering is used, the average improvement is
about 9 percent on the Caltech-Test dataset, 11 percent on
the TUD-Brussels dataset and 17 percent on the ETH data-
set. This experiment shows that the two-pedestrian detector
provides rich complementary information to current state-
of-the-art one-pedestrian detection approaches even when
context [9], [18], [62], [92] or motion [18], [80] is used by
these approaches.

6.3 Investigation on the Varied Improvement
of Our Framework

The improvement of LatSvm-V2-E+Our compared with
LatSvm-V2-E varies from 5 percent on the Caltech Testing
dataset to 9 percent on the ETH dataset. In order to investi-
gate the reason, we show total number of pedestrians and
the number of M-pedestrians in the four datasets in Fig. 13.
Pedestrians overlapping with other pedestrians are called
M-pedestrians in this paper. Our approach focuses on M-
pedestrians. The M-pedestrians in the subset reasonable
(explained in the paragraph before Section 6.1) are put into
the subset multiple for evaluation. As shown in Fig. 15, the
miss rate reduction of our LatSvm-V2-E+Our compared
with LatSvm-V2-E is close on the three datasets. Note that
an M-pedestrian is still a 1-pedestrian. As shown in Fig. 13,
the number of M-pedestrians divided by the number of
all pedestrians is the largest for the ETH dataset, i.e., about
2/3, but the smallest for the Caltech Testing dataset, i.e.,
about 1/3. When this ratio is larger, the improvement from
M-pedestrians contribute more to the overall result. There-
fore, the subset reasonable in Fig. 14 is similar to the subset
multiple in Fig. 15 for the ETH dataset where M-pedestrians
appears more frequently.

6.4 Investigation on Joint Detection Scheme

Fig. 16 shows the experimental results on different joint
detection schemes. All the approaches in Fig. 16 are
trained on the extended INRIA training dataset described
in Section 6.1. LatSvm-V2-E denotes the result using only
the one-pedestrian DPM. LatSvm-V2-E+Joint denotes the
joint person detection scheme in [75], which uses two
stages of NMS for combining one-pedestrian and two-
pedestrian detection results. The result from [75] is
obtained by using the authors source code. LatSvm-V2-E
+Our denotes our scheme. Both LatSvm-V2-E+Joint and
LatSvm-V2-E+Our use the same one-pedestrian and two-
pedestrian detection results. They are only different in
the joint detection scheme. Experimental results in Fig. 16
show that our approach performs better than the
approach in [75]. The post-processing steps (bounding

box regression and two-level NMS) of LatSvm-V2-E+Joint
are explicitly designed and work well for side-view per-
son/person pairs who walk very close to each other.
However, it does not perform well when pedestrians
have large variation in window size, 3D spatial location,
and walking directions, which is the case for the ETH,
TUD, and Caltech datasets. Note that we only re-imple-
ment the part of integrating one-pedestrian detection
results and two-pedestrian detection results, but not the
whole approach of [75]. Because integration scheme is
the overlapping part of our approach and the approach
in [75]. Tang et al. [75] has major contributions regarding
jointly training one-pedestrian and two-pedestrian
detectors with segmentation maps from the training set,
synthetically generating two-people samples, and inte-
grating the model into a tracking approach. These contri-
butions are orthogonal to our contributions and thus are
not implemented.

7 DISCUSSION

In this paper, we have used two-pedestrian detection results
to improve the one-pedestrian detection results. Since both
two-pedestrian and one-pedestrian detection scores are con-
sidered as the input of our framework, the framework keeps
unchanged if other pedestrian detection approaches are
used. Therefore, the other models like the tree model in [31],
[73], [98], the loopy graph model in [64], [84], the complete
graphmodel in [6] and the pictorial structures in [1], [31] can
be used for both single- and two-pedestrian detection.

Since we do NMS after the single-pedestrian detection
results are refined by the two-pedestrian detector, it may
miss one of the pedestrians if their overlap is larger than
0.5. An example is shown in Fig. 11a. This problem could be
handled with more advanced post-processing approaches,
e.g., mean-shift.

This paper shows by experiment that the two-pedestrian
detector improves the detection performance. Nevertheless,
investigation on K-pedestrian detector (K > 2) in crowded
scenes is a potential way of improvement.

In this paper, the one-pedestrian and two-pedestrian
detection results are assumed to be provided in order to be
independent of detectors and features. However, interaction
between one-pedestrian and two-pedestrian detector in the
training stage is a future work for improvement. For exam-
ple, one-pedestrian detector can be influenced by the two-
pedestrian detector and vise versa.

Fig. 10 shows that one-pedestrian detection result using
motion (MultiFtr+Motion and ACF+SDt) can be improved
with the help of two-pedestrian detection results. Although

Fig. 11. Failure cases caused by NMS (a) and the imperfect two-pedes-
trian detector (b).
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we only use the HOG feature extracted from static images
for two-pedestrian detection, the framework is naturally
applicable for single- and two-pedestrian detection using
multiple cues like depth, motion and segmentation.

Our approach can also be considered as a rescoring
approach. Probabilistic formulation is chosen because it is
the idea behind our final implementation and it is a princi-
pled tool. Hough voting is also widely used in rescoring
activations [3], [8], [41], [42], [89]. As pointed out in [3], to
some extent, Hough voting can be viewed as logarithms of
pðxi ¼ hjIiÞ, where xi ¼ h implies that the voting element i
is generated by the object h, Ii is the descriptor of the voting
element i. However, rather than fusing all the votes in a
principled way, Hough voting simply sums them up. There-
fore, the probabilistic representation of Hough voting has
the joint product form so that its logarithm can be repre-
sented by summation. However, our model in (12) cannot
be represented by the joint product form because of the
summation over pðc ¼ 1Þ and pðc ¼ 2Þ, and the summations
over h, w2 and m2. The summations come from the margin-
alization, e.g. over c ¼ 1 and c ¼ 2. Thus ours is not a Houg
voting method.

Because of the imperfectness of the two-pedestrian detec-
tor, some false positives will have their detection scores
increased, e.g., in Fig. 11b.

This paper focuses on detecting pedestrians. In the future
work, we will investigate on using the model for other
objects, e.g., cars and articulated persons.

7.1 Relationship Among Existing Approaches

There are many approaches that consider multiple pedes-
trians for detection. These approaches can be grouped into
two categories:

1. Find out the best configuration of multiple pedestrians
[3], [41], [42], [88], [89], [91]. In these approaches, pedes-
trians are represented as an assembly of several parts, and
joint part combination for multiple pedestrians are sought.
Denote the configuration of the nth object by zðnÞ for
n ¼ 1; . . . ; N . These approaches can be considered as solv-
ing one of the following problems:

argmaxzð1Þ...zðNÞ
Y
n

pðIjzðnÞÞ (14)

or argmaxzð1Þ...zðNÞpðzð1Þ . . . zðNÞÞ
Y
n

pðIjzðnÞÞ: (15)

Non-maximum suppression is also an approach for solving
the problem in (14). Since the search space for zð1Þ . . . zðNÞ is
too large, greedy search is often adopted [3], [89], [91]. These
approaches are useful for handling inter-object occlusion.

2. Use the existence, location, orientation and size infor-
mation of the other objects for refining the configuration of
the target object [16], [62], [93]. Let zC ¼ ðl1;1; . . . ; lB;QÞ,
where C ¼ B �Q, lb;q for b ¼ 1; . . . ; B; q ¼ 1; . . . ; Q is the con-
figuration information of the qth contextual object with class
label b. zC is the configurations of the contextual objects for
the target object z1. These approaches can be represented as
follows by setting pðc ¼ CÞ ¼ 1 in (1):

pðz1; IÞ ¼
X
c¼C

X
zc

pðI; z1; zCÞpðc ¼ CÞ

¼
X
zC

pðI; z1; zCÞ ¼
X

l1;...;lQ

pðI; z1; l1;1; . . . ; lB;QÞ

¼
X

l1;...;lQ

pðz1; l1;1; . . . ; lB;QÞpðIjz1Þ
Y
b;q

pðIjlb;qÞ
" #

:

(16)

Many approaches have focused on modeling the configura-
tion relationship pðz1; l1;1; . . . ; lB;QÞ in (16). lb;q and pðz1;
l1;1; . . . ; lB;QÞ are implemented in different ways by different
approaches.

1) The approach in [93] jointly estimated the pose of
two humans. This approach has B ¼ 1; Q ¼ 1. z1 is
the pose of one human and l1;1 is the contextual pose
of another human in [93].

2) The approach in [62] considered the estimated sizes
of objects as context. This constraint of object size is
obtained from the assumption of small 3D object size
variation, ground plane, and perspective view. These
approaches can be considered as having B ¼ 1; Q ¼
1 in (16). pðz1; l1;1Þ is the probability that the size of
z1 conforms to its size estimated from l1;1 using the
geometric constraint. The term pðIjl1;1Þ in (16) is not
considered and can be represented as a constant.

3) In [16], the presence of pedestrians in the neighboring
windows is used as the context. This approach can be
considered as implementing (16) by setting B ¼ 1,
pðz1; l1;1; . . . ; l1;QÞ ¼ pðz1Þ

Q
q pðl1;qjz1Þ, where l1;q

refers to the qth window near z1. The pðIjl1;qÞ in (16) is
obtained from single-pedestrian detector in [16].

These approaches are useful for exploiting the contextual
information of co-occurring objects.

The above two categories can be used with each other.
For example, both NMS, which falls into category 1, and
contexts, which falls into category 2, are used in [62].

These previous approaches model the location and size
correlation among pedestrians. This paper models the

Fig. 13. The overall number of all pedestrians and M-pedestrians on the
x-axis for different datasets (left), the average number of all pedestrians
and M-pedestrians per image on the x-axis (middle) and 3 M-Pedes-
trians (right). An M-pedestrian is a pedestrian whose bounding box over-
laps with other pedestrians.

Fig. 12. Average improvement of the framework for the algorithms in [22]
using different clustering approaches.
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visual cue of two-pedestrians and models the relationship
between single-pedestrian detection results and two-pedes-
trian detection results.

8 CONCLUSION

In this paper, we propose a new probabilistic framework
for single pedestrian detection aided by two-pedestrian
detection. DPM is used to learn the two-pedestrian detec-
tor which effectively captures the unique visual patterns

appearing in nearby pedestrians. Detection performance
is improved by modeling the probabilistic relationship
between the configurations of single-pedestrian detection
results and those of two-pedestrian detection results. It is
very flexible to incorporate with new features (e.g., color
self-similarity, local binary pattern, motion and depth),
other deformable part-based models (e.g., the tree and
loopy models), and learning methods (e.g., boosting).
Existing pedestrian detection results can be directly used
as the input of our framework. Extensive experimental

Fig. 14. Detection results of existing approaches (top) and integrating them with our framework (bottom) on the datasets Caltech-Test (a), TUD-Brus-
sels (b) and ETH (c). The results of integrating existing approaches with our framework are denoted by ‘+Our’, e.g. integration of HOG [10] with our
framework is denoted by HOG+Our.

Fig. 15. Experimental results in detecting M-pedestrians.

Fig. 16. Detection results for different schemes. LatSvm-V2-E denotes single pedestrian detection results using DPM. LatSVM-V2-E+Joint denotes
the joint person detector in [75]. LatSVM-V2-E+Our denotes our approach.
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evaluation shows that the proposed framework can sig-
nificantly improve all the state-of-the-art single-pedes-
trian detection approaches, and that the two-pedestrian
detector provides rich complementary information to cur-
rent state-of-the-art single-pedestrian detection approaches,
even if motion or context is used by these approaches. The
lowest miss rate is reduced from 37 to 32 percent on the
Caltech-Test dataset, from 55 to 50 percent on the TUD-
Brussels dataset and from 43 to 38 percent on the ETH
dataset. For the 14 state-of-the-art approaches evaluated in
[22], the average improvement is 9 percent on the Caltech-
Test dataset, 11 percent on the TUD-Brussels dataset and
17 percent on the ETH dataset.
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Queries to the Author

Q1. Please provide year information in Ref. [39].
Q2. Please provide full bibliographic details in Ref. [57].


