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Simulate brain activities and employ millions of neurons to fit billions of training samples. Deep neural

networks are trained with GPU clusters with tens of thousands of processors

Hinton won ImageNet
competition

Classify 1.2 million images
into 1,000 categories
Beating existing computer
vision methods by 20+%
Surpassing human
performance

MIT Tech Review
Top 10 Breakthroughs 2013
Ranking No. 1

DeepLearning
Deep learning
Web-scale visual search, With massive
.. amounts of
self-driving cars, camﬁptational power,
o . . macnines Can now
surveillance, multimedia recognize objects and

translate speech in
real time. Artificial

intelligence is finally
Hold records on most of the getting smart |
computer vision problems



Performance vs practical need

Many other applications

Face recognition

Conventional Deep model Very Deep Very deep structured
model model learning



Structure in neurons

e Conventional neural networks

— Neurons in the same layer have no connection

— Neurons in adjacent layers are fully connected, at
least within a local region
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Structure exists in brain



Structure in data




Structure in data

Correlation




Outline

a tall building with a clock tower.
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Depth Estimation Scene Graph Generation
(TPAMI'18) (ICCV’17, ECCV’18)
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Outline

Depth Estimation
(TPAMI’18)
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Monocular depth estimation

RGB-Input Ours




Motivation

*Deep structured dense pixel-level prediction:
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CNN coarse output CRF-modeling Inference

Representative works:
« CRF-RNN:

—

S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional random fields as
recurrent neural networks. In /CCV, 2015.

Deep convolutional neural field:

F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from single monocular images using deep convolutional neural fields. /EEE
TPAMI, 38(10):2024-2039, 2016.

Ours: In Multi-scale with pixel-level dense refinement with O(n) complexity



Approach

FrontEnd ConvolutbnalN euralN etw ork

Multi-Scale Deep Structured Fusion & Prediction + In Continuous Domain +
Within a Joint CNN-CRF Framework

Spotlight Oral, TPAMI18



Message passing using CNN-CRF

e 20 minutes to illustrate CRF ...



Results

Qualitative results on NYUD-V2: significant improvement
over the pretrained front-end CNNs




Results

GT Depth Map Eigen et al. [11] Zhou et al. [47] Garg et al. [12] Ours

Results on KITTI: ours achieved the best performance
compared with the state-of-the-art




Results

RGB-Input GT Ours

Errae Accuracy
Method {lower is beller) (higler is bedlber)
rel T 1} [ 4= 1.25 & 1.25% & < 1.25°

HED [42] (1185 0077 0.723 (A7 0.914 (1580
Hypercolumn [13] (184 CLOED 0.730% Lpa7 0911 (15975
C-CRF (193 [L.052 .742 {.pG2 RC (1576
s (single-scale) o187 L1 arIr | 0eA 0.91a ]
e - cascade [3-scale) (176 0074 (L6595 {LRAY9 QL9 20F (1980
Oliies - cascade [5-scale) (1649 0071 LR73 {Lpaa 0.8929 i.9481
Clues - unified [3-scale) 17z [LO7Z .6E3 LR 522 981
Clurs - unified [Fscale) 163 0.06% L.655 0,706 04925 981

More effective than the classic multi-scale fusion schemes

1 Error 2 Errar

Method rel log L) s rel lagl0 Frms
Karsch et al. [17] 0.350 n.1z7 Q.20 0.6l 01448 15,10
Liw et al. [28] 0.33h .137 949 0.3 0134 12,80
Liw et al. [24] 0314 LN ke A.&0 0F 125 12.89
Li et al. [24] 0278 .09z 719 027 ooz 1027
Laina et al. [23] £z loss) 0223 fLOEY 489 - - -
Laina et al. [23] (Huber loss) 0,176 f.072 4,46 - - -
Chars {ResMet-50-cascade) 0213 fL0R2 467 0.2zl 4.79 EElL
Chaes (ResMet-50-unified) 0.206 fL.076 451 0212 4.71 B73
Chaees {ResMet-50-unified-10K) 0.184 0.065 4.38 .1%4 4.53 B.56

Achieved the best performance on most of the metrics.

Qualitative results on Make3D
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Region captioning

Scene graph generation
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Scene Graph Generation
(ICCV’17, ECCV’18)

21



Why structured features?

Contains rich visual information
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Overview our proposed Multi-level
Scene Description Network (MSDN)

Region features
a eatures
eoe

Vi Ph eatures
-heoftnn
(G

"I~ Object features

a man wearing a hat is

flying kite in the park.
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Methodology: Dynamic Graph
Construction
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Methodology: Feature Refining

(a) Object (b) Phrase (c) Region
Updating Updating Updating
© i O
/p ,z’ Q ‘; ________________
/ P “
/ ’,/ %\\
O
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Methodology: Object feature
updating

* Phrase feature merge: Since the features from
different phrases have different importance factors for
refining objects, we use a gate function to determine

weights.

_(pos) _ 1 ((_o) (p)) (»)
0O i ,Q z! B Y, w272 ) a;

(i,7)EE;s p

The gate function is defined as:

G
S (mgo).wﬁ.p)) = Z sigmoid (wéi?m . [azfo)_ J}_(]p)]) _
g=1

* Refine object features: For the i-th object, there are
two merged features:

2%, = z{9 + F#=9) (i@_m)) L pr—o) (dzgpﬁo))

Litr1 i
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Overview our proposed Multi-level
Scene Description Network (MSDN)

|
Feature

. Refining

Scene Graph and Region Caption
Generation
"""" N\
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Quantitative Results

Comparison with existing works:

. ISGG: Scene graph generation using iterative message

passing (Xu, Danfei, et al. arXiv:1701.02426)

Experiment on object detection & captioning:

. LP: Visual Relationship detection using word embeddings as *
language prior (Lu, Cewu, et al., ECCV 2016)

FRCNN: Faster R-CNN (Girshick, Ross., ICCV 2015) with the same
number of potential object proposals as used at our MSDN.
Baseline-3-bran.: the baseline model with 3 branches but the
feature refining structure removed.

Task LP[23] ISGG[3]  Owurs
PredCls R@50 26.67 58.17 67.03
- R@100 33.32 62.74 71.01
PhrCls R@50 10.11 18.77 24.34
] R@ 100 12.64 20.23 26.50
SGGen R@50 (.08 7.09 10.72
R@ 100 0.14 9.91 14.22

Object Det. FRCNN [31] Baseline-3-bran.  Qurs
mean AP(%) 6.72 6.70 7.43
Acc. Top-1(%) 53.57 53.14 61.12
Acc. Top-5(%) 83.50 83.25 89.86
Region Caption Baseline Baseline-3-bran.  Ours
AP [18](%) 3.98 3.68 5.07

30



Qualitative Results

)

the word “ stop ” on the sign

/two man playing tennis.\
(oo ).

 shoe 4*[ wearing] ~ man

|
A 4
\

/tall building with a clock tower.

a large pile of luggage. \

“window +{ on | - buiding

tawm >‘ with ]»

\

Top-1 region captioning results with detected objects and corresponding relationships are
visualized.




2.45s/img

Slow inference speed due to large number of phrase proposals
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Factorizable Net

An Efficient Subgraph-based Framework for Scene Graph Generation

33



(helmet-on-person) (person-wear-pants) (pants-on-person)

O Object nodes O Predicate nodes

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation .” ECCV 2018.



(Shared interacting regions)

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation .” ECCV 2018.
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O Object nodes

O Predicate nodes

D Subgraph nodes



Factorizable Net
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(1) Image and RPN
proposals

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation.” ECCV 2018.



SMP: Spatial-weighted Message Passing

!

( avg-pooled features
(m x 515x1x1) merged features
1 x 512)

—»% ac?—»%
subgraph features é atteftion vector
(mXSlZXSXS) - (le)

. 4O\

object feature refined features
(1 x 512) (1 x 512)

SMP: Object Feature Refining

merged features
(1 x 512x5x%75

object features attention maps

(k x 512) (kx1x5x5)

l N
oo
(kx512x1x1)
»+) =

subgraph feature refined features
(1 x 512x5x% (1 x 512x5x%5)

5) SMP: Subgraph Feature Refining )

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation .” ECCV 2018.



SMP: subgraph to object

avg-pooling or attention
(m x 515x1x1) merged features

% (1 x 512)

B\
0 A, NN

O D subgraph features

(m X 512 x5 x 5)

attention vector

D (m X% 1)

Y
% O =
object feature refined features
(1 x 512) (1 x 512)

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation.” ECCV 2018.



SMP: object to subgraph

object ;eatures attention maps (k x
O (k x 512) 1Xx5x5)

O 0 (k ng QS)

@)
-VIV_

subgraph feature refined features
(1 x 512x5x5) (1 x 512x5x%5)

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation .” ECCV 2018.



SRI: Spatial-sensitive Relation Inference

Subject feature  conv kernel (1 x
(1x512) 512)

_—

\ Concatenate

(1x512%x7%7)

— O

predicate

subgraph feature

(1x512%x7x%x7) (1x1536x7x%x7)

\

*—
Object feature (1x512) (1x512x7x7)
(1x512) Spatial-sensitive Relation Inference (SRI)

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation .” ECCV 2018.



Comparison with Existing Methods

PhrDet SGGen
Dataset Model Rec@50 Rec@100 | Rec@50 Rec@100 Speed
LP [1] 1617 17.03 | 13.86 1470 | 118"
ViP-CNN [3] 22.78 27.91 17.32 20.01 0.78
VRD [1] DR-Net [6] 19.93 23.45 17.73 20.88 2.83
ILC [54] 16.89 20.70 15.08 18.37 2.70**

Ours Full:1-SMP | 25.90 30.52 18.16 21.04 0.45
Ours Full:2-SMP | 26.03  30.77 18.32  21.20 0.55

ISGG [5] 15.87 19.45 8.23 10.88 1.64
VG-MSDN [2,4] | MSDN [4] 19.95 24.93 10.72 14.22 3.56
Ours-Full: 2-SMP | 23.34  28.53 13.75 16.81 0.55
DR-Net [6] 23.95 27.57 20.79 23.76 2.83

VG-DR-Net [2,6
ot [2,6] Ours-Full: 2-SMP | 26.71 31.33 21.44 24.90 0.55

* Only consider the post-processing time given the CNN features and object detec-
tion results. ** As reported in [54], it takes about 45 minutes to test 1000 images

on single K80 GPU.

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation .” ECCV 2018.



Evaluation on Object Detection

Model FRCNN-64 [55] FRCNN-300 [55] MSDN [4] Ours-w/o-Rel Ours

mean AP (%) 6.72 10.21 7.43 13.02 15.70

*  FRCNN-64: Faster RCNN with 64 object proposals (experiment settings in [7])
*  FRCNN-300: Faster RCNN with 300 object proposals (experiment settings in [9])
*  MSDN: Our proposed Multilevel Scene Description Network in [4]
*  Ours-w/o-Rel: Adopt the subgraph-based framework but without relationship supervision
*  Ours: Our Factorizable Net with 1 SMP (model 5 in Ablation Study)
[4] Li, Yikang, et al. “Scene graph generation from objects, phrases and region captions.” ICCV 2017.

[8] Li, Yikang, et al. “Factorazable Net: An Efficient Subgraph-based framework for Scene Graph Generation .” 2018.

[9] Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015.



Does structure only exist for specific
task?



Outline

Optical guided feature
(CVPR18)
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Current CNN Structures

Called U-Net, Hourglass, or Conv-deconv

Image Classification: Detection/Segmentation:
Summarize high-level semantic High-level semantic meaning with
information of the whole image. high spatial resolution




Architectures designed for

different granularities are
DIVERGING



Unify the advantages of networks for pixel-level,
region-level, and image-level tasks



Hourglass for Classification

Features with high-level semantics and
high resolution is good

Directly applying
hourglass for classification?

Poor performance.

So what is the problem?

Different tasks require different
resolutions of feature

with high resolution M /‘/r

L3
a [
== Featuresin @ Featuresin

the tail part the body part
Features in Residual Concat
the head part Blocks.

h )

7
14x14 77 14x14 28x28 56x59
Tail “= = — FishBody — = =

Down sample high-level features 4
74

228x224 .. 56X56




Hourglass for Classification

Normal Res-Block

Res-Block for

down/up sampling

»écout

Different tasks require different
resolutions of feature

Hourglass may bring more isolated
convolutions than ResNet

v

1x1,c¢in 1x1,cp
v ¥

3 X 3,¢in 3 X 3,¢Cin
Y Stride = 2 Vv

1X1,cout 1X1,cout

»écout

© Concat
Our design

I
k 4

1Xx 1»Cin

Y

3 X 3,Cin

Y

1 X 11Cin

Low-level features

Cout — Cin Cout
up/down samp

The 1 X 1 convolution layer in
indicates the Isolated convolution.



Observation and design

Our observation

1. Diverged structures for tasks
requiring different resolutions.

2. lsolated Conv blocks the direct
back-propagation

3. Features with different depths
are not fully explored, or mixed
but not preserved

preserved and refined

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’'16.



Difference between mix and preserve
and refine

m Message generation

_ m
)ﬁ 7o,

Low level Low level

Mixed features Preserve and refine
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FishNet: Performance-ImageNet

@ 23.78%(7.00%) =®=FishNet

®— ResNet

22.50% 22.30%(6.20%)

22.59% °

Jo.rq 1-dog,

21.69%(5.94%)
21.93%(5.92%) @

21.55%(5.86%
21.25%(5. 76%)
20 30 40 50

Parameters, X 10°

24.00%

23.50%

23.00%

22.50%

22.00%

21.50%

21.00%

®23.78% =@=FishNet

@~ ResNet

22.30%
[
21.69%
21.93% ®
21.55%
21.25%
8 10 12
FLOP, x 10°
Code

https://github.com/kevin-ssy/FishNet



FishNet: Performance-ImageNet

24.00% 23.78%(7.00%)
o -®-FishNet
23.50%
° ®-DenseNet
23.00% ®-ResNet
22.58%(6.35%)

22.30%(6.20%)
c

22.50% | 0. 92.20%(6.20%)

22.00%1.93%(5.92%) 22.15%(6.12%) 21.69%(5.94%)
|

Joarqg 1-doj,

(o)
AL 21.55%(5.86%)

®

10 20 30 50 60

Parameters, X 10°

Code
https://github.com/kevin-ssy/FishNet




FishNet: Performance on COCO
Detection

Code
https://github.com/kevin-ssy/FishNet




FishNet: Performance on COCO
Instance Segmentation

Code
https://github.com/kevin-ssy/FishNet




Winning COCO 2018 Instance
Segmentation Task

ap. ap??  ap™  apS  apM  apl  ART AR ART0?  ARS  ARM  ARL  date

& MMDet 0.438 0.730 0530 0339 0520 08602 023562 0.593 0.632 0484 0665 0777 é?fﬁ;

& Meqgvii (Face++) 0.435 0737 0532 0292 0507 0841 023869 0.594 0.630 0474 08659 0767 ;:1;1:

& FirstShot 0.463 0681 0508 0258 0433 08636 0359 0.530 0622 0445 0635 0776 é?f’r:



Visualization
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Visualization




Visualization

sheep

shegp

PEYSOT

person
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Visualization

SERDE




Visualization
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Codebase o5,

e Comprehensive

RPN Fast/Faster R-CNN
(M Mask R-CNN FPN

@ Cascade R—CNN RetinaNet

OMore - -

* High performance
Better performance
Optimized memory consumption
(Y Faster speed

* Handy to develop GitHub: mmdet
Written with PyTorch
Modular design



FishNet: Advantages

* Better gradient flow to shallow layers

* High-resolution features contain rich low-level
and high-level semantics

* Build up correlation among features with
different semantic information

— They are preserved and refined from each other




Outline

Introduction

Structured deep learning

FishNet
(NIPS 18)
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Action Recognition

* Recognize action from videos

Ixmt’ung Mix\_i;g Batter Moppmg F1001




Optical flow in Action Recognition

* Motion is the important information
* Optical flow

— Effective

— Time consuming We need a better motion
representation

Modallty Acc.

85. 5%
RGB+Opt|caI Flow 94. O%




Optical flow guided feature
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Optical flow guided feature

Optical flow:
.I(x_, y,t) ]:.I(x +Ax,y +Ay,t + A t)l

0I(x,y,1) 0I(x,y,1) l(x,y,t)
I v, + 5 vy + Y =0

~ 7

{v,, Vy} = optical flow

l Intuitive Inspiration

Coefficient for optical flow:
oI(x,y,t) ol(xy,t) 9I(xyt)
ax ' o9y ' ot

{




Optical flow guided feature

Feature flow:

fUx,y,0))=f(Ux + Ax,y +Ay,t + At))

af (I(x,y,1)) 5 4 af (I(x,y,t)) 5 4 ofI(x,y,t))
dx x dy Y at B

Optical flow guided feature (OFF):
{Bf (Ixyt)w) of(I(xyt)w) of (x.y.t):W)}
ox ’ ay ’ at




Optical flow guided feature
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Optical Flow Guided Feature (OFF):

Experimental results
FPS

RGB + OFF I—
RGB + Optical flow + 13D 1l

0 50 100 150

Accuracy (%)

RGB + OFF
RGB + Optical flow + 13D |

92.0 92.5 93.0 93.5 94.0 94.5 95.0 95.5 96.0
1. OFF with only RGB inputs is comparable with the other state-of-the-art methods using
optical flow as input.



Not only for action recognition

* Also effective for
— Video object detection

— Video compression artifact removal

Detection (mAP)
resnet+rfcn+OFF I

resnet+rfcn |

715 72 725 73 735 74 745 75 755 76

Compression Artifact Removal (PSNR
DnCNN+OFF

DnCNN - I = a0

34.6 34.8 35 35.2 354 35.6 35.8 36 36.2
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Structured deep learning
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Take home message

e Structured deep learning is
— effective
— for output, features

— from observation

* End-to-end joint training bridges the gap
between structure modeling and feature
learning



Thank you!



