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Pedestrian detection
(CVPR’17)
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Scene parsing and depth
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3D human pose estimation
(CVPR’18)

Image/video classification
(CVPR’18, NIPS’18)




Simulate brain activities and employ millions of neurons to fit billions of training samples. Deep neural

networks are trained with GPU clusters with tens of thousands of processors

Hinton won ImageNet
competition

Classify 1.2 million images
into 1,000 categories
Beating existing computer
vision methods by 20+%
Surpassing human
performance

MIT Tech Review
Top 10 Breakthroughs 2013
Ranking No. 1

DeepLearning
Deep learning
Web-scale visual search, With massive
.. amounts of
self-driving cars, camﬁptational power,
o . . macnines Can now
surveillance, multimedia recognize objects and

translate speech in
real time. Artificial

intelligence is finally
Hold records on most of the getting smart |
computer vision problems



Performance vs practical need

Many other applications

Face recognition

Conventional Deep model Very Deep Very deep structured
model model learning



Structure in neurons

e Conventional neural networks

— Neurons in the same layer have no connections

— Neurons in adjacent layers are fully connected, at
least within a local region
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Structure exists in brain



Structure in data
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Introduction

Back-bone model design

Conclusion 0



Effectively using high performance
imaging data

Training Deployment

Ofim  1.7pm 2.5pm 3.0pm
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Multi-modal data RGB only

Image from https://research.csiro.au/data61/high-performance-imaging/
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Motivation

* Challenging open issues in pedestrian detection: illumination
variation, shadows, background clutter, and low external light

* Exploiting thermal data in addition to RGB data for learning cross-
modal representations

Hard positive samples Hard negative samples

g .
e




Motivation

* Challenging open issues in pedestrian detection: illumination
variation, shadows, background clutter, and low external light

* Exploiting thermal data in addition to RGB data for learning cross-
modal representations

* Can we transfer the learned cross-modal representations?

Cross modallt\m.

| Deep Reconstruction Deep Detection

Missing

G

i thermal data???
nlili RGB Data Thermal Data Data
w'w ViuiN
H m(m(' { 0” ‘ f(‘ff‘ff' _i
Reconstruction network Detectlon network




Approach

* RRN

- RGB domain to Thermal domain

- weakly supervised reconstruction

- region-based instead of frame-level
based

* MSDN

- cross-modal multi-scale feature fusion
- the parameters of subnetwork in
yellow box are transferred from RRN

U

1R - |




miss rate

.10

MSDN: multi-scale detection network

Results - Caltech

o Average Miss rate

B 94.73% VJ
= == §§.48% HOG

51.36% ACF

= w= 44 229% ACF-Caltech
w37 34% ACF4+SDt
29.76% ACF-Caltech+
20.86% TA-CNN

13.76% CMT-CNN-SA \
10.69% CMT-CNN \
1

CMT-CNN-SA 13.76%

- CMT-CNN 10.69%

1073 1072 107" 10° 10"
False positives per image

- Demonstrated the effectiveness of the learned cross-modal representations

- Achieved superior detection performance



Results - KAIST

0,
CMT-CNN WS4.78A
49.55%
o)
cmr-cnn-sasemagencr) | & 150,
2.15%
0,
cmr-CN-s-se(Random) | i < 7cc
56.76%
0,
ovrows: N oo,
54.26%

45.00% 47.00% 49.00% 51.00% 53.00% 55.00% 57.00% 59.00% 61.00% 63.00%
® Night mDay mAll

- Demonstrated the effectiveness of the learned cross-modal representations

- Achieved superior detection performance
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Effectively using high performance
Images



Motivation

Segmentation

‘
"
4

Depth estimation

Dan Xu, Wanli Ouyang, Xiaogang Wang, Nicu Sebe, “PAD-Net: Multi-Tasks Guided Prediction-and-Distillation
Network for Simultaneous Depth Estimation and Scene Parsing”, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 2018)



Motivation

Multi-task learning?

Segmentation

Depth estimation

- Directly optimizing multiple tasks given input training data
does not guarantee consistent gain on all the tasks



Motivation

| ‘ L |

Surface normal Segmentation

Semantic Contour Depth estimation

- Multi-modal input data improve training of deep networks

- Facilitate final tasks via leveraging intermediate multiple predictions while only
one single modal data are required?



Approach

DECONV

DECONYV

DECONV

DECONV

|
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lllustration of the proposed multi-task distillation network for simultaneous
depth estimation and scene parsing



Approach

Decoder
for
Depth

Decoder
for
Parsing

* Different multi-task distillation modules:

Naive implementation via feature concatenation
Passing message between feature maps

Attention mechanism guided message passing module



Results for scene parsing on Cityscapes

0.77
0.761
0.76 0.756
0.75 0.748
0.74 0.736
0.73
0.725 0.723
0.72
0.71
0.7
Front-end+ DE Front-end + DE + PAD-Net PAD-Net PAD-Net PAD-Net
(baseline) SP (baseline) (Distillation A (Distillation B (Distillation C  (Distillation C +
+SP ) +SP ) +SP ) DE + SP)

Multi-task learning results in decrease of IOU accuracy
Distillation improves accuracy

Message passing with attention performs better :




Results

Table 1. Diagnostic experiments for the depth estimation task on
- Datasets: NYUD-V2 and Cityscapes NYUD V2 dataset. Distillation A, B, C represents the proposed

. : . three multi-task distillation modules.
Ablatlon StUdy ) Method Error (lower is better)  Accuracy (higher is better)
- (i) PAD-Net (Distillation A + DE): PAD-Net etho el logl0 rms 0<125 6<125% 6<1.25
performing the DE task using the distillation Front-end + DE (baseline) 0265 0.120 0945 0447 0745  0.897
module A Front-end + DE + SP (baseline) 0260 0.117 0930 0467 0760  0.905
- (ii) PAD-Net (Distillation B + DE): similar to (i) PAD-Net (Distillation A + DE) 0248 0.112 0.892 0513 0798 0921
, : g PAD-Net (Distillation B + DE) 0230 0.099 0.850 0591 0854  0.953
Whlle using the_dl_smlfrﬂ'on module B _ _ PAD-Net (Distillation C + DE) 0221 0.094 0813 0619 0882  0.965
- ('”)_PADTNet (D|SJF|”§“0U B + DE): similar to (i) PAD-Net (Distillation C + DE + SP) | 0.214 0.091 0.792  0.643  0.902  0.977
while using the distillation module C
- (iv) PAD_'Net (Distillation C + D_E + SP): _ Table 2. Diagnostic experiments for the scene parsing task on the
perfo_rm_mg_ DE and SP tasks simultaneously with  NYUD V2 dataset.
the distillation module C Method Mean IoU Mean Accuracy Pixel Accuracy
. = Front-end + SP (baseline) 0.291 0.301 0.612
Effe(:tlveness on bOth datasets Front-end + SP + DE (baseline) 0.294 0.312 0.615
. Significant improvement over SOTA PAD-Net (Distillation A + SP) 0.308 0.365 0.628
L .. PAD-Net (Distillation B + SP) 0.317 0.411 0.638
methods on joint prediction of both PAD-Net (Distillation C + SP) 0325 0.432 0.645

tasks PAD-Net (Distillation C + DE + SP) ~ 0.331 0.448 0.647




Results

Estimation

GT  Estimation

Qualitative results on NYUD-V2



Estimation GT Estimation

GT

Qualitative results on Cityscapes



Effectively using high performance
Images

Feature fusion Structured features



Challenges: No Annotation

Constrained scenes In-the-wild scenes

\[o)
ﬂ Discrepancy annotation

31



Which one is more plausible?

Discriminator
32



Weakly Supervised Adversarial Learning

3D dataset Images w/o GT

Real Fake

v X

Prediction

Jm  mo

Ground-truth
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Adversarial Learning
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Euclidean Loss Classification Loss
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Multi-Source Discriminator

Real or Fake samples

Image |
)
n Real
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<
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Geometric 3 —p
descriptor g X
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Raw poses

2D Heatmaps Depthmaps @ Concatenat|on
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Human3.6M

MPII

Effectiveness of Adversarial Learning

Initialization
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60k iters
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120k iters
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Ablation Study on H36M Dataset

Mean per joint position error
MPJPE (error in mm) on H36M

%
. 8 o less error
) Image+Pose+Geo
A
+ 3 Image+Geo 60.3
o R
61.3
Jointly learn 2D + depth
& Fix 2D, finetune depth 65.2
Zhou et al. ICCV’17 64.9
58 59 60 61 62 63 64 65 66
B Full = Geo Pose M Baseline m Baseline (fix 2D) State-of-art*
39

*Zhou et al. ICCV’17



baseline

Ours

Results on Images in the Wild

pright

Mistake ¥

kunning pright

Mistake #1
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Multi-view Results

41
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Does structure only exist for specific
task?



Outline

Effectively using high performance images

Optical guided feature
(CVPR18)

44



Low-level and high-level features
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Image from Andrew Ng’s slides



Current CNN Structures

Called U-Net, Hourglass, or Conv-deconv

Image Classification: Detection/Segmentation:
Summarize high-level semantic High-level semantic meaning with
information of the whole image. high spatial resolution




Architectures designed for

different granularities are
DIVERGING



the advantages of networks for pixel-level,
region-level, and image-level tasks



Hourglass for Classification

Features with high-level semantics and
high resolution is good

Directly applying
hourglass for classification?

Poor performance.

So what is the problem?

Different tasks require different
resolutions of feature

with high resolution M /‘/r

L3
a [
== Featuresin @ Featuresin

the tail part the body part
Features in Residual Concat
the head part Blocks.

h )

7
14x14 77 14x14 28x28 56x59
Tail “= = — FishBody — = =

Down sample high-level features 4
74

228x224 .. 56X56




Hourglass for Classification

Normal Res-Block

Res-Block for

down/up sampling

»écout

Different tasks require different
resolutions of feature

Hourglass may bring more isolated
convolutions than ResNet

v

1x1,c¢in 1x1,cp
v ¥

3 X 3,¢in 3 X 3,¢Cin
Y Stride = 2 Vv

1X1,cout 1X1,cout

»écout

© Concat
Our design

I
k 4

1Xx 1»Cin

Y

3 X 3,Cin

Y

1 X 11Cin

Low-level features

Cout — Cin Cout
up/down samp

The 1 X 1 convolution layer in
indicates the Isolated convolution.



Observation and design

Our observation

1. Diverged structures for tasks
requiring different resolutions.

2. lsolated Conv blocks the direct
back-propagation

3. Features with different depths
are not fully explored, or
but not preserved

Solution

Unify the advantages of
networks for pixel-level, region-
level, and image-level tasks.

Design a network that does not
need isolated convolution

Features from varying depths
are from
each other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’'16.



Difference between mix and preserve
and refine

High level

High level

Low level Low level

Mixed features Preserve and refine
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FishNet: Performance-ImageNet

@ 23.78%(7.00%) =®=FishNet

®— ResNet

22.50% 22.30%(6.20%)

22.59% °

Jo.rq 1-dog,

21.69%(5.94%)
21.93%(5.92%) @

21.55%(5.86%
21.25%(5. 76%)
20 30 40 50

Parameters, X 10°

24.00%

23.50%

23.00%

22.50%

22.00%

21.50%

21.00%

®23.78% =@=FishNet

@~ ResNet

22.30%
[
21.69%
21.93% ®
21.55%
21.25%
8 10 12
FLOP, x 10°
Code

https://github.com/kevin-ssy/FishNet



FishNet: Performance-ImageNet

24.00% 23.78%(7.00%)
o -®-FishNet
23.50%
° ®-DenseNet
23.00% ®-ResNet
22.58%(6.35%)

22.30%(6.20%)
c

22.50% | 0. 92.20%(6.20%)

22.00%1.93%(5.92%) 22.15%(6.12%) 21.69%(5.94%)
|

Joarqg 1-doj,

(o)
AL 21.55%(5.86%)

®

10 20 30 50 60

Parameters, X 10°

Code
https://github.com/kevin-ssy/FishNet




FishNet: Performance on COCO
Detection

Code
https://github.com/kevin-ssy/FishNet




FishNet: Performance on COCO
Instance Segmentation

Code
https://github.com/kevin-ssy/FishNet




Winning COCO 2018 Instance
Segmentation Task

ap. ap??  ap™  apS  apM  apl  ART AR ART0?  ARS  ARM  ARL  date

& MMDet 0.438 0.730 0530 0339 0520 08602 023562 0.593 0.632 0484 0665 0777 é?fﬁ;

& Meqgvii (Face++) 0.435 0737 0532 0292 0507 0841 023869 0.594 0.630 0474 08659 0767 ;:1;1:

& FirstShot 0.463 0681 0508 0258 0433 08636 0359 0.530 0622 0445 0635 0776 é?f’r:



Visualization
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Visualization




Visualization
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Visualization
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Visualization
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Codebase o5,

e Comprehensive

RPN Fast/Faster R-CNN
(M Mask R-CNN FPN

@ Cascade R—CNN RetinaNet

OMore - -

* High performance
Better performance
Optimized memory consumption
(Y Faster speed

* Handy to develop GitHub: mmdet
Written with PyTorch
Modular design



FishNet: Advantages

1. Better gradient flow to shallow layers

2. High-resolution features contain rich low-level
and high-level semantics

3. Feature from varying depth are preserved and
refined from each other




Outline

Effectively using high performance images

FishNet
(NIPS 18)

67



Action Recognition

* Recognize action from videos

Ixmt’ung Mix\_i;g Batter Moppmg F1001




Optical flow in Action Recognition

* Motion is the important information
* Optical flow

— Effective

— Time consuming We need a better motion
representation

Modallty Acc.

85. 5%
RGB+Opt|caI Flow 94. O%




Optical flow guided feature
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Optical flow guided feature

Optical flow:
.I(x_, y,t) ]:.I(x +Ax,y +Ay,t + A t)l

0I(x,y,1) 0I(x,y,1) l(x,y,t)
I v, + 5 vy + Y =0

~ 7

{v,, Vy} = optical flow

l Intuitive Inspiration

Coefficient for optical flow:
oI(x,y,t) ol(xy,t) 9I(xyt)
ax ' o9y ' ot

{




Optical flow guided feature

Feature flow:

fUx,y,0))=f(Ux + Ax,y +Ay,t + At))

af (I(x,y,1)) 5 4 af (I(x,y,t)) 5 4 ofI(x,y,t))
dx x dy Y at B

Optical flow guided feature (OFF):
{Bf (Ixyt)w) of(I(xyt)w) of (x.y.t):W)}
ox ’ ay ’ at




Optical flow guided feature
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Optical Flow Guided Feature (OFF):

Experimental results
FPS

RGB + OFF I—
RGB + Optical flow + 13D 1l

0 50 100 150

Accuracy (%)

RGB + OFF + Optical Flow |
RGB + OFF
RGB + Optical flow + 13D [ NG

92.0 92.5 93.0 93.5 94.0 94.5 95.0 95.5 96.0
1. OFF with only RGB inputs is comparable with the other state-of-the-art methods using
optical flow as input.



Not only for action recognition

* Also effective for
— Video object detection

— Video compression artifact removal

Detection (mAP)
resnet+rfcn+OFF I

resnet+rfcn |

715 72 725 73 735 74 745 75 755 76

Compression Artifact Removal (PSNR
DnCNN+OFF

DnCNN - I = a0

34.6 34.8 35 35.2 354 35.6 35.8 36 36.2



Outline

Effectively using high performance images
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Take home message

e Structured deep learning is
— effective

e Effectively using high performance imaging as the
privileged information by exploring the
structured information at

— Sample level
— Feature level

* End-to-end joint training bridges the gap
between structure modeling and feature learning



Joint work

Elisa Ricci

Shuyang Sun






