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automatic car driving

 Robotics and Human-
computer interaction

 Internet of Things

 Public safety and smart 
city

 Social network

 Industrial production

 Bio-medical imaging

Microaneurysms

Blot hemorrhages
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Challenges -- person
• Intra-class variation
• Color

• Occlusion

• Deformation



Deep learning 

MIT Tech Review
Top 10 Breakthroughs 2013
Ranking No. 1

Hinton won ImageNet
competition 
Classify 1.2 million images 
into 1,000 categories
Beating existing computer 
vision methods by 20+% 
Surpassing human 
performance

Hold records on most of the 
computer vision problems

Web-scale visual search, 
self-driving cars, 
surveillance, multimedia 
… 

Simulate brain activities and employ millions of neurons to fit billions of training samples. Deep neural 
networks are trained with GPU clusters with tens of thousands of processors



ImageNet Large Scale Visual Recognition Challenge
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ImageNet Object Detection Task
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 200 object classes

 ~500,000 training images, 60,000 test images



Mean Averaged Precision (mAP)

UvA-Euvision
22.581%

ILSVRC 2013ILSVRC 2014

Google
GoogLeNet

43.9%

DeepID-Net
50.3%

W. Ouyang and X. Wang, et al. “DeepID-Net: Deformable Deep Convolutional Neural Networks 
for Object Detection,” CVPR15, TPAMI17

MSRA
ResNet
62.0%

CVPR’15

GBD-Net
66.3%

ILSVRC 2015 ILSVRC 2016

X. Zeng, W. Ouyang, J. Yan, etc, “Crafting gbd-net for object detection,” ECCV16, TPAMI 2017



Our team at ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC)

2014 2015 2016

Object detection 2nd (Google 1st) 1st

Video object 
detection/tracking

1st 1st



Our team at Common Object in Context (COCO)

2018

Object detection and instance segmentation 1st
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Is deep model a black box?
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Performance vs practical need

Conventional 
model

Deep model Very Deep 
model

Very deep structured 
learning

Many other applications

Face recognition
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Model structures among neurons

h1

x

y

h2
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Conventional
Knowledge based 
structured  latent 

factor

Structured output
Structured output 

and feature
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Object detection

• Sliding window

• Variable window size



Motivation

• Much more negative samples than positive 
samples

• Easy to tell some regions do not contain any 
object
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Cascade Network

Learned classifier 

for sheep

Image with RoIs

Stage 2 Stage 3Stage 1

Remaining RoIs

on the image

classifier classifier classifier

bg? bg? bg?

Rejected RoIs

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Cascade Network

Learned classifier 

for sheep

Image with RoIs

Stage 2 Stage 3Stage 1

Remaining RoIs

on the image

classifier classifier classifier

bg? bg? bg?

Rejected RoIs

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Cascade Network

Learned classifier 

for sheep

Image with RoIs

Stage 2 Stage 3Stage 1

Remaining RoIs

on the image

classifier classifier classifier

bg? bg? bg?

Rejected RoIs

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Model structures among classifiers at 
different stages

• Build up cascade at several stages in one 
network

convolution on image

loss function for 

training
softmax

softmax

softmax

detection 

results

chained class 

scores

... ...

chained CNN 

features for RoI

...
roi-pooling

rejected 

RoI

contextual cascade

RoIs

...

rejected 

RoI

Classifier chaining with multiple 

cascade stages

remaining 

RoIsfeatures
remaining 

RoIs

detection scores

classifier

classifier

classifier

early cascade

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Model structures among classifiers at 
different stages

Learned classifier 

for sheep

Image with RoIs

Stage 2 Stage 3Stage 1

Remaining RoIs

on the image

classifier classifier classifier

bg? bg? bg?

Rejected RoIs

tooth brush, tooth brush, tooth brushaxe, axe, tooth brush

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Model structures among classifiers at 
different stages with different context

• Build up structure among classifiers ci(*) at 
different stages

softmax

softmax

softmax

features

p1

p2

p3

p4

u(p1, r1)=0?

u(p2, r2)=0?

u(p3, r3)=0?

u(p4, r4)=0?

rejected

rejected

rejected

rejected

Y

Y

Y

Y

N

N

N

detection 

results

c2(f2)⊙b2

summed 

class scores

+

c1(f1)

⊙b1

c3(f3)⊙b3

+

c4(f4)⊙b4
+

f1

f2

f3

f4

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Experimental results

• Build up structure among classifiers ci(*) at 
different stages

ImageNet val2 detection mean average precision (%) with

different setting on classifier chaining.

cascade? √

chaining classifier? √

mAP 49.4 50.9

softmax

softmax

softmax

features

p1

p2

p3

p4

u(p1, r1)=0?

u(p2, r2)=0?

u(p3, r3)=0?

u(p4, r4)=0?

rejected

rejected

rejected

rejected

Y

Y

Y

Y

N

N

N

detection 

results

c2(f2)⊙b2

summed 

class scores

+

c1(f1)

⊙b1

c3(f3)⊙b3

+

c4(f4)⊙b4
+

f1

f2

f3

f4

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Structured output

• Treat deep model as feature extractor

• Jointly learn feature and structured output
– Structure layer capture the structured information that cannot be 

modeled by conventional deep model, e.g. relationship between 
cascaded classifiers

– Conventional deep model need not be influenced by the problem that 
can be well solved by structured model, e.g. need not be influenced by 
the huge amount of easy negative data

Deep model Structure learning

Feature extraction Structure learning

Input

Input

Output

Output

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.
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• Introduction
• Learning features

– Learning Feature Pyramids (ICCV17)

• Learning
– Structure of output
– Structured Hidden factors

• Joint deep learning for pedestrian detection (ICCV13)
• Deep-ID Net for object detection (T-PAMI16)
• Mutual Learning Mutual Visibility Relationship for pedestrian 

detection (IJCV16)

– Structure of features

• Conclusion
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Challenges -- person
• Intra-class variation
• Color

• Occlusion

• Deformation

Hidden
No 

annotation



Is deep model a black box?
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Joint Learning vs Separate Learning

Data 
collection

Preprocessing 
step 1

Preprocessing 
step 2

… Feature 
extraction

Training or 
manual design

Classification

Manual 
design

Training or 
manual design

Data 
collection

Feature 
transform

Feature 
transform

… Feature 
transform

Classification

End-to-end learning

? ? ?

Deep learning is a framework/language but not a black-box model

Its power comes from joint optimization and 
increasing the capacity of the learner
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• N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.  
CVPR, 2005. (10,000+ citations)

• P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained, 
Multiscale, Deformable Part Model.  CVPR, 2008. (4000+ citations)

• W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection 
with Occlusion Handling.  CVPR, 2012. 
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Our Joint Deep Learning Model

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.
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Our Joint Deep Learning Model

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.
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Our Joint Deep Learning Model

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.



Modeling Part Detectors

 Design the filters in the second 
convolutional layer with variable sizes

Part models Learned filtered at the second 
convolutional layer

Part models learned 
from HOG

53
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Deformation Layer

 Infer the location of object parts
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Deformation Layer

 Infer the location of object parts
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Our Joint Deep Learning Model

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.
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Visibility Reasoning with Deep Belief Net

Correlates with part detection score

 Infer the visibility of 
object parts



Pedestrian Detection on Caltech 
(average miss detection rates)

58

HOG+SVM
68% DPM

63%

Joint DL
39%

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” ICCV 2013.

Joint DL-v2
9%

W. Ouyang et. al, “Jointly learning deep features, deformable parts, occlusion and 
classification for pedestrian detection,” TPAMI, accepted.

Our code:

Our code:



Generalize from single pedestrian to 
multiple pedestrians

Single pedestrian

Multiple pedestrians
IJCV’16

Generic Object detection
TPAMI’17 (most popular)

Deformation

Visibility
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h

x

y

Structure in neurons

• Conventional neural networks

– Neurons in the same layer have no connection

– Neurons in adjacent layers are fully connected, at least 
within a local region

Structure exists in brain
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• Introduction

• Learning features

• Learning

– Structured output

– Structured Hidden factors

– Structure of features

• GBD-Net for Object detection (ECCV16)

• Structured feature learning for pose estimation (CVPR16)

• CRF-CNN for pose estimation (NIPS 16)

• Attention-Gated CRFs for Contour Prediction (NIPS17)

• Scene Graph Generation from Objects, Phrases and Region Captions 
(ICCV17)

• Conclusion
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Message from past ImageNet Challenge

 Design a good learning strategy (VGG, BN) or a good 
branching structure (Inception, ResNet) to make the 
model deeper

8 8 19 22

152

0

50

100

150

200

AlexNet
(ILSVRC 2012)

ZF-Net,
Overfeat

(ILSVRC 2013)

VGG (ILSVRC
2014)

GoogleNet
(ILSVRC 2014)

ResNet
(ILSVRC 2015)

Number of layers

64



Message from past ImageNet Challenge

 Design a good learning strategy (VGG, BN) or a good 
branching structure (Inception, ResNet) to make the 
model deeper



Is deeper the only way to go?
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GBD-Net

Context

What can our vision researchers’ observation help?



Context

 Visual context helps to identify objects
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 Visual context helps to identify objects

Context
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Motivation

 With the deep model, what can we do for context?

 Learning relationship among features of different 
resolutions and contextual regions.

 Features of different contextual regions validate each 
other

 Control the flow of message passing

Rabbit ear

Rabbit head Rabbit head

Human face

Rabbit ear



Fast R-CNN



Gated bi-directional CNN (GBD-Net)
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Gated bi-directional CNN (GBD-Net)

 Features of different context and resolution



Gated bi-directional CNN (GBD-Net)

 Features of different context and resolution



Gated bi-directional CNN (GBD-Net)

 Features of different context and resolution



Gated bi-directional CNN (GBD-Net)

 Passing messages among these features



Independent features



Passing message in one direction



Passing message in two directions



Passing message with gates

 +3.7% mAP on BN-Inception



Gated bi-directional CNN (GBD-Net)



Improvement from GBD-net

DataSet ImageNet val2 Pascal  VOC 07 COCO (AP50) 

Without GBD 48.4 73.1 39.3

+ GBD 52.1 77.2 45.8

BN-net (BN-Inception) as the baseline

3.7 4.1

6.5

0

2

4

6

8

ImageNet val2 Pascal  VOC 07 COCO (AP50)



Brief summary

 Features matter

 Observations from vision researchers also matter

 Use deep model as a tool to model the relationship 
among features

 Gated bi-directional network (GBD-Net)

 Pass messages among features from different 
contextual regions

Code: https://github.com/craftGBD/craftGBD
Zeng et al. “Crafting GBD-Net for Object Detection,” TPAMI, accepted.

93

A pretrained deep model with 269 layers is also provided

https://github.com/craftGBD/craftGBD


Motivation

• Debate

– Lack of "general theory"

• Solution

– Probabilistic model, conditional random field, is 
used as the theory



Conditional Random Field

Where,



…

…

…

…

…

…

(a) Multi-layer neural 

network

(b) Structured 

output space

(c) Structured 

hidden layer

I

h

z

ezh

ezh

eh

"End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose 
Estimation", CVPR 2016.

…

…

(d) Attention gated Structured 

hidden layer

Learning Deep Structured Multi-Scale Features using Attention-Gated CRFs for Contour Prediction", NIPS, 2017. 

"Structured feature learning for pose estimation", CVPR 2016.

“CRF-CNN: Modeling Structured Information in Human Pose Estimation”, NIPS, 2016.

Model (a)

Model (b)

Model (c)

Model (d)



Mean Field Approximation

To obtain the estimation of features:

𝑝 𝒉|𝐈, 𝛉 = ς𝑖𝑄(𝐡𝑖|I, 𝛉)

𝑄 𝐡𝑖 I, 𝛉 =
1

𝑧ℎ,𝑖
𝑒

− σℎ
𝑘
Φ

ℎ ℎ
𝑘
,I −σ(𝑖,𝑗)∈𝜀

ℎ
𝜑

ℎ
(𝐡

𝑖
,𝑄(ℎ𝑗|I,𝛉)



Message passing

• Belief propagation

– N2 => 2N
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Why structured features?

• Richer visual information

Label: rabbit Visual feature

Facing left



Model structures among neurons

h1

x

y

h2
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Conventional
Knowledge based 
structured  latent 

factor

Structured output
Structured output 

and feature



Is structured learning only effective for 
object detection?



Application of structured feature 
learning

• Haze removal (Submitted to CVPR19)

• Depth estimation (TPAMI 18)

• Contour estimation (NIPS 17)

• Detection (TPAMI17, TPAMI18, …) 

• Human pose estimation (CVPR16)

• Person re-identification (CVPR18)

• Relationship estimation (ICCV17)

• Image captioning (ICCV17)

D. Xu, et al., "Monocular Depth Estimation using Multi-Scale Continuous CRFs as Sequential Deep Networks," TPAMI 2018.

W. Ouyang, et al., ” Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection,” TPAMI 2018.
W. Ouyang, et. al. “DeepID-Net: Object Detection with Deformable Part Based Convolutional Neural Networks”, TPAMI 2017.
X. Chu, W. Ouyang, et. al. "Structured feature learning for pose estimation". CVPR 2016.
Y. Li, W. Ouyang, et. al. "Scene Graph Generation from Objects, Phrases and Region Captions", ICCV, 2017.

Low-level vision

High-level vision

Vision + Language



Is structured learning only effective for 
specific vision task?
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Back-bone deep model design

• Basis structure of deep model

– AlexNet, VGG, GoogleNet, ResNet, DenseNet

– Validated on large-scale classification tasks such as 
ImageNet

– Models pretrained on ImageNet are found to be 
effective initial model for other tasks
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FishNet (NeurIPS18) Optical flow guided feature (CVPR18)
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Back-bone model design

Introduction
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Conclusion

FishNet (NeurIPS18) Optical flow guided feature (CVPR18)



Low-level and high-level features

Image from Andrew Ng’s slides

Low-level

High-level



Current CNN Structures

Image Classification: 
Summarize high-level semantic 
information of the whole image.

Detection/Segmentation:
High-level semantic meaning with 
high spatial resolution

Called U-Net, Hourglass, or Conv-deconv



Architectures designed for tasks of different granularities are
DIVERGING



Unify the advantages of networks for pixel-level, 
region-level, and image-level tasks



Observation and design
• Design• Our observation

1. Diverged structures for tasks 
requiring different resolutions.

1. Unify the advantages of 
networks for pixel-level, region-
level, and image-level tasks.



Hourglass for Classification

Poor performance.

So what is the problem?

• Different tasks require different 
resolutions of feature

Directly applying 
hourglass for classification?

Features with high-level semantics and 
high resolution is good

• Down sample high-level features 
with high resolution

Our design



Observation and design

• Observation

1. Diverged structures for tasks 
requiring different 
resolutions.

2. Isolated Conv blocks the 
direct back-propagation

• Design
1. Unify the advantages of networks 

for pixel-level, region-level, and 
image-level tasks.



Hourglass for Classification

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑜𝑢𝑡

1 × 1, 𝑐𝑜𝑢𝑡

𝑐𝑜𝑢𝑡

𝑆𝑡𝑟𝑖𝑑𝑒 = 2

The 𝟏 × 𝟏 convolution layer in yellow
indicates the Isolated convolution.

• Hourglass may bring more isolated 
convolutions than ResNet

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑜𝑢𝑡

𝑐𝑜𝑢𝑡

Normal Res-Block
Res-Block for 

down/up sampling



Observation and design

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑖𝑛

C

Low-level 
features 𝑐𝑜𝑢𝑡 −

𝑐𝑖𝑛
𝑐𝑜𝑢𝑡

C Concat

𝑢𝑝
/𝑑𝑜𝑤𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

Our design

• Observation

1. Diverged structures for tasks 
requiring different 
resolutions.

2. Isolated Conv blocks the 
direct back-propagation

• Design
1. Unify the advantages of networks 

for pixel-level, region-level, and 
image-level tasks.

2. Design a network that does not 
need isolated convolution



Observation and design

1. Diverged structures for tasks 
requiring different 
resolutions.

2. Isolated Conv blocks the 
direct back-propagation

3. Features with different 
depths are not fully explored, 
or mixed but not preserved

1. Unify the advantages of networks 
for pixel-level, region-level, and 
image-level tasks.

2. Design a network that does not 
need isolated convolution

3. Features from varying depths are 
preserved and refined from each 
other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’16.

• Observation • Design



Difference between mix and preserve 
and refine

High level

Low level
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Difference between mix and preserve 
and refine
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Observation and design

Solution

1. Diverged structures for tasks 
requiring different resolutions.

2. Isolated Conv blocks the direct 
back-propagation

3. Features with different depths are 
not fully explored, or mixed but 
not preserved

Our observation

1. Unify the advantages of networks 
for pixel-level, region-level, and 
image-level tasks.

2. Design a network that does not 
need isolated convolution

3. Features from varying depths are 
preserved and refined from each 
other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’16.



FishNet: Overview
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FishNet: Preservation & Refinement
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FishNet: Performance-ImageNet
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https://github.com/kevin-ssy/FishNet



FishNet: Performance-ImageNet

22.59%

21.93%(5.92%)

21.55%(5.86%)

21.25%(5. 76%)

22.58%(6.35%)

22.20%(6.20%)

22.15%(6.12%)

21.20%

23.78%(7.00%)

22.30%(6.20%)

21.69%(5.94%)

21.00%

21.50%

22.00%

22.50%

23.00%

23.50%

24.00%

10 20 30 40 50 60 70

FishNet

DenseNet

ResNet

T
o

p
-1

 E
rro

r

Parameters, × 106

Code
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FishNet: Performance on COCO 
Detection and Segmentation
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Winning COCO 2018 Instance 
Segmentation Task
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Codebase

• Comprehensive

RPN                     Fast/Faster R-CNN

Mask R-CNN FPN

Cascade R-CNN           RetinaNet

More … …

• High performance

Better performance

Optimized memory consumption 

Faster speed

• Handy to develop

Written with PyTorch

Modular design

√

√

√

√

√

√

√

√

√

GitHub: mmdet
√

√



FishNet: Advantages

1. Better gradient flow to shallow layers

2. Features 

➢ contain rich low-level and high-level semantics

➢ are preserved and refined from each other

Code
https://github.com/kevin-ssy/FishNet



Outline

136

Back-bone model design

Introduction

Structured deep learning

Conclusion

FishNet (NeurIPS18) Optical flow guided feature (CVPR18)



Action Recognition

• Recognize action from videos



Optical flow in Action Recognition

• Motion is the important information

• Optical flow

– Effective

– Time consuming

Modality Acc. Speed(fps)

RGB 85.5% 680

RGB+Optical Flow 94.0% 14

We need a better motion 
representation



Optical flow guided feature

−



Optical flow guided feature

{vx , vy} = optical flow

Coefficient for optical flow:

Optical flow:

Intuitive Inspiration



Optical flow guided feature

Feature flow:

{       } = feature flow



Optical flow guided feature
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Shuyang Sun, Zhanghui Kuang, Lu Sheng, Wanli Ouyang, Wei Zhang. "Optical Flow Guided Feature: A Motion 
Representation for Video Action Recognition", Proc. CVPR, 2018.



Optical Flow Guided Feature (OFF): 
Experimental results

1. OFF with only RGB inputs is comparable with the other state-of-the-art methods using 
optical flow as input.

0 50 100 150 200 250

RGB + Optical flow + I3D

RGB + OFF

RGB + OFF + Optical Flow

FPS

92.0 92.5 93.0 93.5 94.0 94.5 95.0 95.5 96.0

RGB + Optical flow + I3D

RGB + OFF

RGB + OFF + Optical Flow

Accuracy (%)
Code:



Not only for action recognition

• Also effective for 

– Video object detection

– Video denoising 



Optical Flow Guided Feature (OFF): 
Experimental results

1. q40 means quantization factor.

71 72 73 74 75 76

resnet+rfcn

resnet+rfcn+OFF

Detection (mAP) 

34.6 34.8 35 35.2 35.4 35.6 35.8 36 36.2

DnCNN

DnCNN+OFF

Compression Artifact Removal (PSNR)

q40



Video Compression

The figure is from Bernd Girod’s slides



Video Compression

1990 1995 2000 2005 2010

H.261 H.262 H.264 H.265H.263

Disadvantages:
• Hand-crafted techniques
• Not friendly for emerging contents
• Not easy to improve the efficiency in the old pipeline

What  happens when video compression meets deep learning?



Traditional Video Compression
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Traditional Video Compression
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Traditional Video Compression
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Traditional Video Compression
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Deep Video Compression Model
Method
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Deep Video Compression Model

• Experimental Results



Take home message

154

• Structured deep learning is

– effective

– for output and features

– from observation

• End-to-end joint training bridges the gap 
between structure modeling and feature 
learning


