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Application

4

Automotive safety and
automatic car driving

Robotics and Human-
computer interaction
Internet of Things
Public safety and smart

city

. v
Social network icroaneurysms

Industrial production
Bio-medical imaging

10/1/2019 Blot hemorrhages



Challenges -- person
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Challenges -- person
* Intra-class variation

* Color
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Simulate brain activities and employ millions of neurons to fit billions of training samples. Deep neural

networks are trained with GPU clusters with tens of thousands of processors

Hinton won ImageNet
competition

Classify 1.2 million images
into 1,000 categories
Beating existing computer
vision methods by 20+%
Surpassing human
performance

MIT Tech Review
Top 10 Breakthroughs 2013
Ranking No. 1

DeepLearning
Deep learning
Web-scale visual search, With massive
.. amounts of
self-driving cars, camﬁptational power,
o . . macnines Can now
surveillance, multimedia recognize objects and

translate speech in
real time. Artificial

intelligence is finally
Hold records on most of the getting smart |
computer vision problems
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ImageNet Object Detection Task

1 200 object classes

0 ~500,000 training images, 60,000 test images

person

IHwdar nor

s power drill

person

chair

'person

helmet

motorcycle




Mean Averaged Precision (mAP)

GBD-Net
MSRA  66.3%
ResNet
62.0%

GoogleNet 50.3%
43.9%

UvA-Euvision
22.581%

ILSVRC 2013ILSVRC 2014 CVPR’15LSVRC 2015 ILSVRC 2016
W. Ouyang and X. Wang, et al. “DeeplD-Net: Deformable Deep Convolutional Neural Networks
for Object Detection,” CVPR15, TPAMI17
X. Zeng, W. Ouyang, J. Yan, etc, “Crafting gbd-net for object detection,” ECCV16, TPAMI 2017



Our team at ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

Object detection 2nd (Google 1st)

Video object
detection/tracking




Our team at Common Object in Context (COCO)

Object detection and instance segmentation
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Is deep model a black box?

/



Performance vs practical need

Many other applications

Face recognition

Conventional Deep model Very Deep Very deep structured
model model learning



Structure in data
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Structure




Model structures among neurons

Knowledge based Structured output

Conventional Structured output structured latent and feature
_ factor
vy ©¢ o o o—0—0 @ O ©o Oo—O0—oO0
oy iy T ol
e © © 0 O O O O O 010 m
O O O O O O O O 00
{ £ T i
h1 O O O O O O O O O g:g:g:g
O O O O O O O O O
oy ol oy oy
X O O O O

29



Outline

Structured Hidden factors !

Back-bone model design

Conclusion

30



Outline

31



Object detection

* Sliding window
 Variable window size




Motivation

* Much more negative samples than positive
samples

e Easy to tell some regions do not contain any
object




Cascade Network

Image with Rols

- —— —— . ———



Cascade Network

Image with Rols

e — classifier

v
bg?
Rejected Rols l

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Cascade Network

Image with Rols
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Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Cascade Network

Image with Rols
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Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Model structures among classifiers at
different stages

* Build up cascade at several stages in one

network

early cascade

Classifier chaining with multiple
cascade stages

A A
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convolution on image
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results



Model structures among classifiers at
different stages

Image with Rols
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Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Model structures among classifiers at
different stages with different context

* Build up structure among classifiers ¢;(*) at
different stages

f
f; Gih) > AP rejected
©b,
Co(f2) ©b, softmax .
2 —>< P2 rejected
Cs(fs) ©bs softmax |
fs E—— N 0 rejected

C4(f4) O) b4 / S

oftmax Y
- ——c@ — & , [5)=02>—> rejected
summed detection
features

class scores results
Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Experimental results = .-

* Build up structure among classifiers ¢;(*) at
different stages

cascade? \'/
chaining classifier? V
mAP 49.4 50.9

ImageNet val2 detection mean average precision (%) with
different setting on classifier chaining.

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.



Structured output

* Treat deep model as feature extractor
* Jointly learn feature and structured output

— Structure layer capture the structured information that cannot be
modeled by conventional deep model, e.g. relationship between
cascaded classifiers

— Conventional deep model need not be influenced by the problem that
can be well solved by structured model, e.g. need not be influenced by
the huge amount of easy negative data

Input —— Deep model —— Structure learning ——— Output

8

Input —— Feature extraction —— Structure learning —— Output

Wanli Ouyang, Kun Wang, Xin Zhu, Xiaogang Wang. "Chained Cascade Network for Object Detection", Proc. ICCV, 2017.
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Outline

 |ntroduction

e Learning features
— Learning Feature Pyramids (ICCV17)

* Learning
— Structure of output

— Structured Hidden factors

* Joint deep learning for pedestrian detection (ICCV13)
e Deep-ID Net for object detection (T-PAMI16)

* Mutual Learning Mutual Visibility Relationship for pedestrian
detection (1JCV16)

— Structure of features
e Conclusion

44



Object detection

45
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Challenges -- person

* Occlusion
* Deformation

\Jo)

: Hidden
annotation
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Is deep model a black box?

/



Joint Learning vs Separate Learning

Training or

manual design

Training or
manual design

|

|

Manual
design

|

Data Preprocessing Preprocessing
collection step 1 step 2
? ?
[ ] [ ]
Data Feature Feature
collection transform transform

End-to-end learning

Feature
extraction

—>

Classification

?

Feature
transform

>

Classification

Deep learning is a framework/language but not a black-box model

Its power comes from joint optimization and

increasing the capacity of the learner

48




We jointly learn

o7 N

Occlusion
handling

Part deformation
handling

A4 V¥

Occlusion
handling
methods

Feature ; .
Classification

€

Deformable
part-based

* N. Dalal and B. Triggs. Histog
CVPR, 2005. (10,000+ citations)

* P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (4000+ citations)

 W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.



Our Joint Deep Learning Model

Visibility
reasoning and
classification

Convolutional Average Convolutional Deformation
layer 1 pooling layer 2 layer

Part
detection
map

Extracted
feature

Image data Filtered data

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.




Our Joint Deep Learning Model

Visibility
reasoning and
classification

Convolutional Average Convolutional Deformation
layer 1 pooling layer 2 layer

Part
detection
map

Extracted
feature

Image data Filtered data

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.




Our Joint Deep Learning Model

Convolutional Average Convolutional Deformation
layer 1 pooling layer 2 layer

®
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Part
Extracted detection Part

feature score
map

Image data Filtered data

Visibility
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W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.




Modeling Part Detectors

» Design the filters in the second
convolutional layer with variable sizes

Part models

Part models learned
from HOG

Head-torso Head-shoulder Legs
at level 3 at level 2 at level 2
- ‘ L2l " | -
"! {'\ /“\
» ,l‘. . . . - .. "‘ ‘
Ser | T

Head-shoulder Full-body Torso
at level 3 at level 3 at level 2

Learned filtered at the second
convolutional layer 53



Deformation Layer

» Infer the location of object parts

Part detection
map

R RERF
Level 3 |L il f ?
i
Level 2 L1 i i
un
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Deformation Layer

» Infer the location of object parts

summed map

FPart score

B, ™= Global masrp. Sp
__pedling

—
—

Part detection
map




Our Joint Deep Learning Model

Convolutional Average Convolutional Deformation
layer 1 pooling layer 2 layer
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Part
Extracted detection Part
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map
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W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.




Visibility Reasoning with Deep Belief Net

» Infer the visibility of LetilS Codinlll | %
object parts

Level 2

v (@D

Level 1

TI+1 r LT 1 [+1 [+1 1+1
hy"" =o(h w,; +¢" +g; s )

Correlates with part detection score



Pedestrian Detection on Caltech
(average miss detection rates)

Our code:

HOG+SVM
68% DPM

39%

Joint DL-v2
9%

___

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” ICCV 2013.

W. Ouyang et. al, “Jointly learning deep features, deformable parts, occlusion and
classification for pedestrian detection,” TPAMI, accepted.
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Generalize from single pedestrian to
multiple pedestrians

Deforiation

Generic Object detection
TPAMI’17 (most popular)

Single pedestrian

Visibility

Multiple pedestrians
1JCV’16
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Structure in neurons

* Conventional neural networks
— Neurons in the same layer have no connection

— Neurons in adjacent layers are fully connected, at least
within a local region

Yot
O O O O
O O O O
h i}
O O O O
O O O O

0>

Structure exists in brain



Outline

— Structure of features
* GBD-Net for Object detection (ECCV16)
» Structured feature learning for pose estimation (CVPR16)
* CRF-CNN for pose estimation (NIPS 16)
» Attention-Gated CRFs for Contour Prediction (NIPS17)

* Scene Graph Generation from Objects, Phrases and Region Captions
(ICCV17)



Object detection
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Message from past ImageNet Challenge

0 Design a good learning strategy (VGG, BN) or a good
branching structure (Inception, ResNet) to make the

model deeper Number of layers

200 -

152
150 -
100 -
50 -

22

0 -

AlexNet ZF-Net, VGG (ILSVRC  GoogleNet ResNet

(ILSVRC 2012) Overfeat 2014) (ILSVRC 2014) (ILSVRC 2015)
(ILSVRC 2013)

64



Message from past ImageNet Challenge

0 Design a good learning strategy (VGG, BN) or a good
branching structure (Inception, ResNet) to make the
model deeper

AWE NEEP 1060

»
”

.
!

DEEPER &



Is deeper the only way to go?



What can our vision researchers’ observation help?
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What can our vision researchers’ observation help?

GBD-Net

Context



Context

0 Visual context helps to identify objects




Context

0 Visual context helps to identify objects

TRENDS in Cognitive Sciences TRENDS in Cognitive Sciences



Motivation

0 With the deep model, what can we do for context?
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Motivation

0 With the deep model, what can we do for context?
0 Learning relationship among features of different
resolutions and contextual regions.

o Features of different contextual regions validate each
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o Not always true

Rabbit ear Rabbit ear

-
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Motivation

0 With the deep model, what can we do for context?
0 Learning relationship among features of different
resolutions and contextual regions.

o Features of different contextual regions validate each
other

o Control the flow of message passing

\ // )
/ \ 3
/ % -
. 4 N

Rabbit ear

Rabbit ear

-

Rabbit head

Rabbit head

r
Human face



Fast R-CNN




Gated bi-directional CNN (GBD-Net)
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Gated bi-directional CNN (GBD-Net)




Gated bi-directional CNN (GBD-Net)




Gated bi-directional CNN (GBD-Net)

0 Passing messages among these features




Independent features




Passing message in one direction




Passing message in two directions




Passing message with gates

0 +3.7% mAP on BN-Inception




Gated bi-directional CNN (GBD-Net)




Improvement from GBD-net

BN-net (BN-Inception) as the baseline

6.5
] ] l

ImageNet val2 Pascal VOC 07 COCO (AP50)

o N B~ O OO0



Brief summary

1 Features matter
1 Observations from vision researchers also matter

1 Use deep model as a tool to model the relationship
among features

0 Gated bi-directional network (GBD-Net) [=] [=]

O Pass messages among features from different
contextual regions E

A pretrained deep model with 269 layers is also provided

Code: https://github.com/craftGBD/craftGBD

Zeng et al. “Crafting GBD-Net for Object Detection,” TPAMI, accepted.



https://github.com/craftGBD/craftGBD

Motivation

e Debate

— Lack of "general theory"

e Solution

— Probabilistic model, conditional random field, is
used as the theory



Conditional Random Field

p(z hL,8) = ) p(zh]1,0)
h

Where,

o—E(zh10)

p(z, h|l, 9)=m

zh ™~



y4
ezh
h ==
Yy @
€h
|
(a) Multi-layer neural  (b) Structured (c) Structured (d) Attention gated Structured
network output space hidden layer hidden layer

E(zh1,0) =X, ®p(h, 1) + Xi pyes,, Ponlzs hk)

E(z,h1,0) = Eh (ij'hk, D+ E[i,kje_gﬂ . (z;, hy) + E{f,j JE& @(z;, Z__.f:]'

E(z h,I, B] = Ek mh{hk, D+ Ef, (pzh(zin h-i) + E(i,j]Esz ‘;az(ziw Z}') + E|"."-:.J"|-E =

E(z,h1,0) = X, ®uehy, D + Z; 02n(2;, hi) + E(i.j]E&'z ©.(2;,2;) + E{'k,E'JEsh 9 @r(hy, hy)

"End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose
Estimation", CVPR 2016.

"Structured feature learning for pose estimation", CVPR 2016.

“"CRF-CNN: Modeling Structured Information in Human Pose Estimation”, NIPS, 2016.

Learning Deep Structured Multi-Scale Features using Attention-Gated CRFs for Contour Prediction", NIPS, 2017.



To obtain the estimation of features:

p(h|1,0) =]]; Q(h;1,0)

Mean Field Approximation

Q(h;|1,0) = — e{_ Xh, q)h.[hk,l'_ﬁl_Z(i,j]EEh ¢,(h,Q(hj ILGJ}
Zh,i




Message passing

* Belief propagation

— N2=>2N
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Why structured features?

 Richer visual information

Label: rabbit

Visual feature

Facing left



Model structures among neurons

Knowledge based Structured output

Conventional Structured output structured latent and feature
factor
y © o o 0—0—o0 @ o o &—e—0
{ 0 1NN ir
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Is structured learning only effective for
object detection?



Application of structured feature
learning

 Haze removal (Submitted to CVPR19)
* Depth estimation (TPAMI 18) —  Low-level vision
e Contour estimation (NIPS 17) _
e Detection (TPAMI17, TPAMI1S, ...) N
 Human pose estimation (CVPR16) - High-level vision
* Person re-identification (CVPR18)
e Relationship estimation (ICCV17)
* Image captioning (ICCV17) | Vision + Language

D. Xu, et al., "Monocular Depth Estimation using Multi-Scale Continuous CRFs as Sequential Deep Networks,” TPAMI 2018.

W. Ouyang, et al., ” Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection,” TPAMI 2018.
W. Ouyang, et. al. “DeeplID-Net: Object Detection with Deformable Part Based Convolutional Neural Networks”, TPAM/ 2017.

X. Chu, W. Ouyang, et. al. "Structured feature learning for pose estimation". CVPR 2016.

Y. Li, W. Ouyang, et. al. "Scene Graph Generation from Objects, Phrases and Region Captions", ICCV, 2017.



Is structured learning only effective for
specific vision task?
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Outline

Structured deep learning

Conclusion
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Back-bone deep model design

e Basis structure of deep model
— AlexNet, VGG, GoogleNet, ResNet, DenseNet

— Validated on large-scale classification tasks such as
ImageNet

— Models pretrained on ImageNet are found to be
effective initial model for other tasks



Outline

Structured deep learning

Conclusion
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Outline

Structured deep learning

Optical flow guided feature (CVPR18)

Conclusion

109



Low-level and high-level features

High-level

REBEIENN =7
Cembh ol 74

Low-level

Image from Andrew Ng’s slides



Current CNN Structures

Called U-Net, Hourglass, or Conv-deconv

Image Classification: Detection/Segmentation:
Summarize high-level semantic High-level semantic meaning with
information of the whole image. high spatial resolution




Architectures designed for tasks of different granularities are
DIVERGING



the advantages of networks for pixel-level,
region-level, and image-level tasks



Observation and design

* Our observation * Design
1. Diverged structures for tasks 1. Unify the advantages of
requiring different resolutions. networks for pixel-level, region-

level, and image-level tasks.



Hourglass for Classification

Features with high-level semantics and
high resolution is good

Directly applying
hourglass for classification?

Poor performance.

So what is the problem?

Different tasks require different
resolutions of feature

with high resolution M /‘/r

L3
a [
== Featuresin @ Featuresin

the tail part the body part
Features in Residual Concat
the head part Blocks.

h )

>
14x14 77 14x14 28x28 56x59
Tail “= = — FishBody — = =

Down sample high-level features 4
74

224 . 56X56




Observation and design

 Observation * Design

1. Diverged structures for tasks 1. Unify the advantages of networks
requiring different for pixel-level, region-level, and
resolutions. image-level tasks.

2. Isolated Conv blocks the
direct back-propagation



Hourglass for Classification

Res-Block for

Normal Res-Block .
down/up sampling
—W

—V
1Xx1,cipn 1X1,¢p
Y Y
3 X 3, Cin 1x1, Cout 3 X3, Cin
Y Stride = 2 Y
1X1,cout 1X1,cout

) écout ) écout

The 1 X 1 convolution layer in
indicates the Isolated convolution.

* Hourglass may bring more isolated
convolutions than ResNet



Observation and design

 Observation * Design

1. Diverged structures for tasks 1. Unify the advantages of networks
requiring different for pixel-level, region-level, and
resolutions. image-level tasks.

2. Isolated Conv blocks the 2. Design a network that does not
direct back-propagation need isolated convolution

Our design

Y
1x1, Cin

3 X 3'Cin

1x 1,Cin

Low-level



Observation and design

Observation * Design

. Diverged structures for tasks 1. Unify the advantages of networks
requiring different for pixel-level, region-level, and
resolutions. image-level tasks.

. Isolated Conv blocks the 2. Design a network that does not
direct back-propagation need isolated convolution

. Features with different 3. Features from varying depths are
depths are not fully explored, preserved and refined from each
or but not preserved other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’'16.



Difference between and preserve
and refine

44
ngh level High level ngh level High e\>— '

Mixed

Low level Low level Low level |ow level

features



Difference between and preserve
and refine

m Message generation

fof
)' i 4

Low IeveI Low level

Mixed features Preserve and refine




Observation and design

Solution Our observation
1. Diverged structures for tasks 1. Unify the advantages of networks
requiring different resolutions. for pixel-level, region-level, and
2. Isolated Conv blocks the direct image-level tasks.
back-propagation 2. Design a network that does not
3. Features with different depths are need isolated convolution
not fully explored, or but 3. Features from varying depths are
not preserved preserved and refined from each
other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’'16.



FishNet: Overview

s Features in ﬁ Features in
the tail part the body part

Features in Residua |:|
—p
the head part | Blocks Concat

[ — e e o o o
1 : 1 :
1 1 1
! 224x224 7x7 i 14x14: 28x28 56x56 1 28x28 : 14x14 7x7 1x1
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FishNet: Preservation & Refinement

Blocks

2 x 2 Max-Pooling <« -- "\’4%\;1&\?
Nearest neighbor %~
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Joauq 1-dog,

FishNet: Performance-ImageNet
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Code

https://github.com/kevin-ssy/FishNet
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FishNet: Performance-ImageNet

Joarq 1-dog,
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Code

https://github.com/kevin-ssy/FishNet



FishNet: Performance on COCO
Detection and Segmentation

Detection Instance segmentation
42.00% - 37.50%
; M R-50 * MRS50  HRX-50
41.50% M RX-50 37.00% .
u Fish-150 i Fish-150
0,
41.00% 36.50%
40.50%
36.00%
40.00%
35.50%
39.50%
0,
39 00% 35.00%
38.50% 34.50% i
38.00% 34.00%
AP
Code

https://github.com/kevin-ssy/FishNet



Winning COCO 2018 Instance
Segmentation Task

ap, AP ap™ apS  apM apl AR ART? AR'? AR ARM  ARL  date

o MMDet 0486 0730 0530 0338 0520 0602 03568 0.593 0832 0464 0865 0777 321183
© Megvii (Face++) 0485 0737 0532 029 0507 0641 0369 0.594 0830 0474 0859 0767 331138
© FirstShot 0463  0.681 0508 0.258 0483 0636 0.359 0.580 0622 0445 08635 0776 2018-

08-17



Visualization
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Visualization




Visualization
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Visualization
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Visualization
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he-ro
[t

Codebase o5,

e Comprehensive

RPN Fast/Faster R-CNN
(M Mask R-CNN FPN

@ Cascade R—CNN RetinaNet

OMore - -

* High performance
Better performance
Optimized memory consumption
(Y Faster speed

* Handy to develop GitHub: mmdet
Written with PyTorch
Modular design



FishNet: Advantages

1. Better gradient flow to shallow layers
2. Features

» contain rich low-level and high-level semantics
» are preserved and refined from each other

Code

https://github.com/kevin-ssy/FishNet




Outline

Structured deep learning

Conclusion

136



Action Recognition

* Recognize action from videos

Ixmt’ung Mix\_i;g Batter Moppmg F1001




Optical flow in Action Recognition

* Motion is the important information
* Optical flow

— Effective
— Time consuming

I®
7

)
\

Modallty Acc.

85. 5%
RGB+Opt|caI Flow 94. O%

I

*

B
\J

)



Optical flow guided feature
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Optical flow guided feature

Optical flow:
.I(x_, y,t) ]:.I(x +Ax,y +Ay,t + A t)l

0I(x,y,1) 0I(x,y,1) l(x,y,t)
I v, + 5 vy + Y =0

~ 7

{v,, Vy} = optical flow

l Intuitive Inspiration

Coefficient for optical flow:
oI(x,y,t) ol(xy,t) 9I(xyt)
ax ' o9y ' ot

{




Optical flow guided feature

Feature flow:

fUx,y,0))=f(Ux + Ax,y +Ay,t + At))

af (I(x,y,1)) 5 4 af (I(x,y,t)) 5 4 ofI(x,y,t))
dx x dy Y at B

Optical flow guided feature (OFF):
{Bf (Ixyt)w) of(I(xyt)w) of (x.y.t):W)}
ox ’ ay ’ at




Optical flow guided feature

eature
t+ At

F

Sobel Subtract
[\;
EW‘ . T‘ j‘i‘ 1 x 1 Conv 1 x 1 Conv
. I
K*K

Classification
Sub-network

Resolution Resolution Resolution
K/2*K/2 K/4*K/4

Shuyang Sun, Zhanghui Kuang, Lu Sheng, Wanli Ouyang, Wei Zhang. "Optical Flow Guided Feature: A Motion
Representation for Video Action Recognition", Proc. CVPR, 2018.




Optical Flow Guided Feature (OFF):

Experimental results
FPS

RGB + OFF I—
RGB + Optical flow + 13D 1l

0 50 100 150

Accuracy (%)

RGB + OFF
RGB + Optical flow + 13D |

92.0 92.5 93.0 93.5 94.0 94.5 95.0 95.5 96.0
1. OFF with only RGB inputs is comparable with the other state-of-the-art methods using
optical flow as input.



Not only for action recognition

* Also effective for
— Video object detection
— Video denoising



Optical Flow Guided Feature (OFF):
Experimental results

Detection (mAP)
resnet+rfcn+OFF [

resnet+rfcn [

71 72 73 74 75 76

Compression Artifact Removal (PSNR)

DncNN+OFF -

H q40
DncNN - [

34.6 34.8 35 35.2 354 35.6 35.8 36 36.2

1. g40 means quantization factor.



Content

Digital Theater
Projection

Broadcast
Delivery

Terrestrial, Satellite
(DVB-T, DVB-S, ATSC)

Web-based .
*Streaming ® —— "i
* Local Playback “;-:—~
Devices @ @/
* Wired
*Wireless (—1 @
eggs&‘:?':o':o’mat : 3 Efficient and flexible
*Secure corz video compression
* Next Gen DVDs standard needed

The figure is from Bernd Girod'’s slides



H.261 H.262 H.263 H.264 H.265 9

1990 1995 2000 2005 2010 L

Disadvantages:

* Hand-crafted techniques

* Not friendly for emerging contents

* Not easy to improve the efficiency in the old pipeline

What happens when video compression meets deep learning?
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Deep Video Compression Model

UVG dataset

391

Wu_ECCV2018
H.264

H.265
Proposed

3

Bpp

0.4

UVG dataset

Wu_ECCV2018
H.264

H.265
Proposed

0.1

Bpp

3 0.4




Take home message

e Structured deep learning is
— effective

— for output and features

— from observation

* End-to-end joint training bridges the gap
between structure modeling and feature
learning



