
From Manual Design to Automatic

Deep Learning

Wanli Ouyang

The University of Sydney

Outline

• Introduction

• Auto-ML

• Manual design

• Conclusion

Outline

• Introduction

10/3/2020
4

Object detectionImage classification

Cat

Cat

Dog

DOG, DOG, CAT

Dog

Deep learning

MIT Tech Review
Top 10 Breakthroughs 2013
Ranking No. 1

Turing award 2018

Hold records on most of the
computer vision problems

Web-scale visual search, self-
driving cars, surveillance,
multimedia …

Simulate brain activities and employ millions of neurons to fit billions of training samples. Deep neural
networks are trained with GPU clusters with tens of thousands of processors

Biology, Physics, Chemistry, Remote
Sensing, …

From Andrej Karpathy’s Twitter (09/Jan/2020)

• A recent post on Reddit: "Is it theoretically possible to do object
recognition with classification algorithms other than NN’s?".

• Just ~8 years ago you'd be more likely to find "Is it theoretically
possible to do object recognition with NN’s?". That was a fun few
years.

Deep learning vs non-deep learning

• Automatically learn features from data

Deep Learning – What’s Next?

Auto-ML

Deep learning vs non-deep learning

• Automatically learn features from data

Deep learning – not fully automatic

• Automatically learn features from data

• Data augmentation?

• Loss function?

• Number of layers?

• What kind of operation in each layer?

• How one layer is connected to another layer?

• Number of channels at each layer?

• …

Manual tuning is required

Automatically learning them is possible by

AutoML

Achieved by deep learning

Auto-ML

• The problem of automatically (without human input) producing test set
predictions for a new dataset within a fixed computational budget [a].

• Target: low error rate with low computational budget

[a] Feurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. "Efficient and

robust automated machine learning." In Advances in neural information processing systems, pp. 2962-2970. 2015.

[b] Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR (2018)
[c] Shah, Syed Asif Raza, Wenji Wu, Qiming Lu, Liang Zhang, Sajith Sasidharan, Phil DeMar, Chin Guok et al. "AmoebaNet: An SDN-enabled
network service for big data science." Journal of Network and Computer Applications 119 (2018): 70-82.

Architecture GPU Days Error Rate Method
NASNet-A [b] 1800 2.65 Reinforcement Learning

AmoebaNet-A [c] 3150 3.34 Evolution

Pipeline of Machine Learning

Data Model Optimization

Data Set

Pipeline of Deep Learning

Data

Augmentation

Model

Network
Architecture

Optimization

Loss FunctionData Set

Towards Auto Training System

Data

Augmentation

Model

Network
Architecture

Optimization

Loss FunctionData Set

EcoNAS
CRNAS

?

?

Auto
Augment

Loss
Function
Search

Outline

• Introduction

• Auto-ML

Towards Auto Training System

Data

Augmentation

Model

Network
Architecture

Optimization

Loss FunctionData Set

NAS

?

?

Auto
Augment

Loss
Function
Search

Online Hyper-parameter
Learning for Auto-Augmentation

Strategy
Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang,

and Junjie Yan

ICCV 2019

Auto-augment search – Existing work

• Search policy on a subsampled dataset and a predefined CNN
• Step 1: The controller generates an augmentation strategy S

• Step 2: Parameters of the CNN are learned using the augmentation strategy S

• Step 3: Get the validation accuracy R for the model with the strategy S

• Step 4: Use the accuracy as the reward for learning the controller

Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).

Sample a strategy S (Operation
type, probability and

magnitude)
Train a child network with
strategy S to get validation

accuracy R

Use R to update the controller

The controller (RNN)

Auto-augment search – Motivation

• Difficulty:
• Slow evaluation of augmentation policy

• Slow convergence of RL due to the RNN controller

• Have to resort to small amount of data:
• CIFAR-10: 8% subsampled

• IMAGENET: 0.5% subsampled

• Have to use very small network:
• CIFAR-10: WideResNet-40-2（small）

• IMAGENET: Wide-ResNet 40-2

• Solution: Treat augmentation policy search as a hyper-parameter
learning

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Sub-optimal solution

Hard for large network

Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).

Hyperparameter Learning

• To learn the hyperparameters from data
• Hyperparameters can be

• Sampling strategy
• Loss weights

• Different from CNN architecture
• CNN architecture is transferable across different dataset
• Hyper-parameters in training strategy are KNOWN to be deeply coupled with

specific dataset and underlying network architecture.

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Hyperparameter Learning -- Challenges

• Usually the hyper-parameters are not differentiable wrt validation
loss.

• Full evaluation-based method using reinforcement learning, evolution,
or Bayesian optimization is computationally expensive and
implausible to be applied on industrial-scaled dataset.

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Our Solution: Online Hyperparameter Learning
(OHL)
• What is OHL

• Online Hyper-parameter Learning aims to learning the best hyper-parameter
within only a single run.

• While learning the hyper-parameters, it improves the performance of the
model at mean time.

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Our Solution: Online Hyperparameter Learning
(OHL)

• Hyper-parameter is modeled as
random variables.

• Split the training stage into trunks
• Run multiple copies of current model,

with different sampled hyper-
parameters.

• At the end of each trunk, we compute
the reward of each copy by its
performance on validation set.

• Update the hyper-parameter
distribution using RL.

• Distribute the best performing model

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Initial Model

Sample hyper-
parameter

𝑝0(𝜃)
Distribute

𝜃1

𝜃2

𝜃𝑛

𝑅1

𝑅𝑛

𝑅2

Update
Distribution

Model With
Highest
Reward

𝑝1(𝜃)

Initial Model

Sample hyper-
parameter

𝑝0(𝜃)

: Initial Distribution𝑝0(𝜃)

Distribute

𝜃1

𝜃2

𝜃𝑛

𝑅1

𝑅𝑛

𝑅2

Update
Distribution

Model With
Highest
Reward

Sample hyper-
parameter

𝑝1(𝜃)

Distribute

𝜃1

𝜃2

𝜃𝑛

𝑅1

𝑅𝑛

𝑅2

Update
Distribution

Our Approach: Online Hyperparameter Learning
(OHL)

Augmentation as hyperparameter

• For fair comparison, we apply the same search space with original
auto-augment, with minor modification

• Each augmentation is a pair of operations eg.
• (HorizontalShear0.1, ColorAdjust0.6)
• (Rotate30, Contrast1.9)
• …

• In a stochastic point of view, the augmentation is a
random variable:
• 𝑝𝜃(𝐴𝑢𝑔)
• 𝛼 is the weight parameter controls

augmentation distribution.
• Learning augmentation strategy is learning 𝜃

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Elements Name Range of magnitude

Horizontal Shear {0.1, 0.2, 0.3}

Vertical Shear {0.1, 0.2, 0.3}

Horizontal Translate {0.15, 0.3, 0.45}

Vertical Translate {0.15, 0.3, 0.45}

Rotate {10, 20, 30}

Color Adjust {0.3, 0.6, 0.9}

Posterize {4.4, 5.6, 6.8}

Solarize {26, 102, 179}

Contrast {1.3, 1.6, 1.9}

Sharpness {1.3, 1.6, 1.9}

Brightness {1.3, 1.6, 1.9}

Experimental Results - CIFAR10

• Using OHL, we train our performance model while learning alpha at
the same time.
• On CIFAR10 (Top1 Error)

4.66

3.87

4.55

3.4
3.62

3.08

3.71

2.9

3.46

2.68

3.16

1.75

3.29

2.61
2.75

1.89

RESNET18 WRN-28 DPN-92 AMOEBANET-B

Baseline Cutout Autoaug OHL-Autoaug

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).

Experimental Results - ImageNet

• On ImageNet (Top1/Top5 Error)

24.7

20.07

22.37

20.03

21.07

19.3
19

20

21

22

23

24

25

RESNET50 SE-RESNET101

Top1 Error

Baseline Autoaug OHL-Autoaug

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).

Computation Required vs Offline Learning

96%

4%

IMAGENET

Autoaug

OHL-Autoaug

98%

2%

CIFAR-10

Autoaug

OHL-Autoaug

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

1

16

1

49

[a] Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).

Dataset Auto-Augment [a] OHL-Auto-Aug

#Iterations Usage of
Dataset (%)

#Iterations Usage of
Dataset(%)

CIFAR-10 4.03 x 106 8% 1.17 x 105 100%

ImageNet 1.76 x 107 0.5% 7.5 x 105 100%

Need to retrain? Y N

Towards Auto Training System

Data

Augmentation

Model

Network
Architecture

Optimization

Loss FunctionData Set

EcoNAS
CRNAS

?

?

Auto
Augment

Loss
Function
Search

EcoNAS: Finding Proxies for Economical Neural

Architecture Search

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy,
Shuai Yi, Xuesen Zhang, Wanli Ouyang

https://arxiv.org/abs/2001.01233

EcoNAS: Finding Proxies for Economical Neural

Architecture Search

CVPR 2020
Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy,

Shuai Yi, Xuesen Zhang, Wanli Ouyang

https://arxiv.org/abs/2001.01233

Proxy

• A proxy is a computationally reduced setting, e.g.
• Reduced input resolution

• Reduced number of channels

• Reduced number of samples

• Reduced number of training epochs

• Compared with the original network, the proxy has the same
• Operation

• Number of layers

• Relative ratio for the numbers of channels between two layers

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Ops:

Exploration study on CIFAR-10

Network Structure (from DARTS [a])

3x3 avg pooling 3x3 Separable Conv

3x3 max pooling 5x5 Separable Conv

5x5 max pooling 7x7 Separable Conv

7x7 max pooling 3x3 Dilated Conv

Identity 1x3 then 3x1 Conv

1x1 Conv 1x7 then 7x1 Conv

3x3 Conv

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

[a] Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055.

Exploration study on CIFAR-10

Specific reduction factors for CIFAR-10

Reduction Factor 0 1 2 3 4

Computation 1

20
1

21
1

22
1

23

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Training Epochs (e) 120 60 30

Exploration study on CIFAR-10

Specific reduction factors for CIFAR-10

Reduction Factor 0 1 2 3 4

Channels for CNN (c) 36 24 18 12 8

Resolution of input
images (r)

32 24 16 12 8

Sample ratio of full
training set (s)

1.0 0.5 0.25 0.125

Training Epochs (e) 120 60 30

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Existing proxies behave differently in maintaining rank consistency.

Real Ranking Ranking in Proxy 1 Ranking in Proxy 2

Network A 1 1 3

Network B 2 2 4

Network C 3 3 1

Network D 4 4 2

Good Proxy Bad Proxy

Example:

Finding reliable proxies is important for Neural Architecture Search.

Motivation

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Spearman Coefficient of original ranking (Ground-Truth Setting) and proxy ranking (reduced setting).

⚫ Value range [-1, 1], higher absolute value indicates stronger correlation.

⚫ Positive value for positive correlation, vice versa.

How to evaluate Proxies?

A model sampled from the search space

With the same iteration numbers, using more training samples with fewer training epochs could

be more effective than using more training epochs and fewer training samples.

Influence of sample ratio (s) and epochs (e)

Reducing the resolution of input images is sometimes feasible

Reducing the number of channels of networks is more reliable than reducing the resolution.

cxrys0e60
c0rxs0eycxr0s0ey

Influence of channels (c) and resolution (r)

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

An efficient proxy does not necessarily have a poor rank consistency.

Efficient proxies

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

1. Select a more efficient and consistent reduced setting as proxy.

2. Hierarchical proxy strategy: train networks with different proxies based on their accuracy.

EcoNAS: Economical evolutionary-based NAS

Setting: Three population sets PE, P2E, P3E, which store networks trained for E, 2E, 3E epochs, respectively.

For each cycle:

Step 1. A batch of networks are randomly sampled from PE, P2E, P3E and mutated. Networks with higher

accuracy are more likely to be chosen. Train the mutated networks for E epochs and add them to PE.

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Step 2. Choose top networks from PE, P2E, load from checkpoints and train E more epochs, then add to P2E, P3E.

Step 3. Remove dead networks from all populations.

1. Reliable proxy and hierarchical proxy strategy will reduce both searching cost and error rate.

Reduced Setting
(w/o hierarchical proxy)

Cost
(GPU days)

Spearman
Coefficient

Params.
(M)

Error Rate (%)

AmoebaNet 3150 0.70 3.20 3.34 ± 0.06

C4r4s0e35 (ours) 12 0.74 3.18 2.94

EcoNAS ablation study on CIFAR-10

Reduced Setting
(w. hierarchical proxy)

Cost
(GPU days)

Spearman
Coefficient

Params.
(M)

Error Rate (%)

NASNet Proxy 21 0.65 2.89 3.20

C3r2s1e60 12 0.79 2.56 2.85

C4r4s0e60 (ours) 8 0.85 3.40 2.60

2. Reliable proxy settings can be adopted in other NAS methods.

EcoNAS ablation study

Method Setup
Cost

(GPU days)
Params.

(M)
Error Rate (%)

DARTS (on CIFAR-10)
c2r0s0 1.5 3.2 3.0

c4r2s0 (ours) 0.3 5.0 2.8

ProxylessNAS
(on ImageNet)

c0r0s0-S 8 4.1 25.4

c0r0s0-L 8 6.9 23.3

c2r2s0

(ours)
4 5.3 23.2

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Not only save searching costs.

But also save re-training costs. Reliable proxies need not many networks to be re-trained.

Method
Number of Re-training
Networks

BlockQNN 100

NASNet 250

AmoebaNet 20

EcoNAS (ours) 5

EcoNAS analysis

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Provides more diverse structures, which allows searching algorithms to find accurate

structures with fewer costs.

Method Network numbers

BlockQNN 11k

NASNet 45k

AmoebaNet 20k

EcoNAS (ours) 1k

EcoNAS analysis

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding
Proxies for Economical Neural Architecture Search." CVPR, 2020.

EcoNAS results on CIFAR-10

EcoNAS results on ImageNet

Towards Auto Training System

Data

AugmentationData Set

?Auto
Augment

Model

Network
Architecture

CRNAS

Optimization

Loss Function

?

Loss
Function
Search

Computation Reallocation for
Object Detection

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu,

Junjie Yan, Wanli Ouyang

ICLR 2020

Motivation

• How to decide the number of layers in each stage?

• The optimal number of layers at a stage is different for different tasks

• Backbone network directly from classification
• Shown to be sub-optimal, e.g. in DetNet for object detection.

in
p

u
t

st
emResNet50

Stage 1 Stage 2 Stage 3 Stage 4

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Motivation

• How to decide the number of layers in each stage?

• The optimal number of layers at a stage is different for different tasks

• Backbone network directly from classification
• Shown to be sub-optimal, e.g. in DetNet for object detection.

• Manual search?
• Too many choices

• High computational cost

• Solution: Computation Reallocation (CRNAS)

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Computation Reallocation(CRNAS)

We aim to reallocate the engaged computation cost in a more efficient
way directly on the detection task. A two-level reallocation space is
conducted to reallocate the computation across:

1. different resolution
• Reallocate the numbers of layers in different stages

• One-shot NAS + exhausted search

2. spatial position
• Introducing dilated conv search space

• One-shot NAS + greedy search

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Related work

• DetNAS [a] attempted to modify the backbone network automatically
by NAS, but it inherits the search space directly from classification.

[a] Chen, Yukang, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Chunhong Pan, and Jian Sun.

"Detnas: Neural architecture search on object detection." arXiv preprint arXiv:1903.10979 (2019).

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Stage reallocation in different resolution

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

in
p

u
t

st
emResNet50

…

…
…

…

Stage 1 Stage n

Stage reallocation in different resolution

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

in
p

u
t

st
emResNet50

…

…
…

…

Stage 1 Stage n

Block onBlock off

Dilation reallocation in spatial position

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Legend

Block on

d
=

1

d
=

2

d
=

3

d
=

1

d
=

2

d
=

3

Block off

Edge on

Edge off

……

stage n

d
=

1
d

=
2

d
=

3

d
=

1
d

=
2

d
=

3

d
=

1
d

=
2

d
=

3

……

d
=

3

d
=

2
d

=
3

d
=

1

d
=

2
d

=
3

d
=

1

d
=

1

d
=

2

d
=

3 Block

evaluating

d
=

1

d
=

2

d
=

3 Block

not searched

Edge

evaluating

Edge

not searched

Partial Architecture Operations to be Sampled

Interpretation of final NAS model

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Two trends:
• More blocks in deeper stage: more resources in deeper stage is preferred.

• More dilated conv in deeper stage: Further explore the network potential to detect large objects.

in
p

u
t

st
em

in
p

u
t

st
em

d
=

1

d
=

1

in
p

u
t

st
em

d
=

1

d
=

1

d
=

3

d
=

2

d
=

3

d
=

2

d
=

1

d
=

2

d
=

1

d
=

3

d
=

2

d
=

2

d
=

1

d
=

1

ResNet50

+stage reallocation

Our final model
+stage reallocation

+ dilated conv search

Analysis of ERF in the FPN

ImageNet classification:
• Input size: 224 * 224

• ERF can be easily satisfied

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

COCO detection:
• Input size: 800 * 1333

• sizes of objects vary from 32 to 800

• ERF need more capacities to handle scale variance across the
instance

Our SCR-ResNet50 has more balanced effective receptive field (ERF) across all resolutions, which leads to higher
performance

Effective receptive field (ERF) [a]: small Gaussian-like factor of theoretical receptive field (TRF), but it
dominates the output.

[a]] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks. In ICCV, pp. 764–773, 2017.

Visualization of ERF in the FPN

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

ResNet50

SCR-ResNet50

P4 P5P3

FPN:

Our SCR-ResNet50 has more balanced effective receptive field (ERF) across all resolutions, which leads to higher
performance

Effective receptive field (ERF) [a]: small Gaussian-like factor of theoretical receptive field (TRF), but it
dominates the output.

[a]] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks. In ICCV, pp. 764–773, 2017.

32.20

32.10

36.40

38.60

33.90

33.80

38.30

40.20

MobileNetV2

ResNet18

ResNet50

ResNet101

+CRNet Origianal

COCO: Consistent gain without additional computation
budget.

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Backbone FLOPs(G)

CR-ResNet101 257.5

ResNet101 257.3

CR-ResNet50 192.7

ResNet50 192.5

CR-ResNet18 147.6

ResNet18 147.7

CR-MobileNetV2 121.4

MobileNetV2 121.1

Transfer-ability over other dataset(VOC), other powerful
neck/head(NAS-FPN) and other vision task(instance
segementation).

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

VOC test2007 (Faster RCNN + FPN)

84.1

85.8

85.1

86.5

82 83 84 85 86 87

ResNet50

ResNet101

COCO Minival (Mask RCNN)

30.6

33.9

35.6

31.8

35.2

36.7

30 32 34 36 38

MobileNetV2

ResNet50

ResNet101

+CRNet Origianal

33.1

37.6

39.7

34.6

39.1

41.5

31 33 35 37 39 41 43

MobileNetV2

ResNet50

ResNet101

+CRNet Origianal

Segmentation Detection

Towards Auto Training System

Data

Augmentation

Model

Network
Architecture

Optimization

Loss FunctionData Set

NAS

?

?

Auto
Augment

Loss
Function
Search

AM-LFS: AutoML for Loss
Function Search

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie
Yan

ICCV 2019

Motivation

• Loss function plays an important role in visual analysis.

• Problem of existing loss function designs
• heavily rely on domain experts to explore the large design space

• usually time-consuming

• cannot be adapted to the data.

• Using different loss functions in different training stages had been
observed effective under certain conditions, e.g. curriculum learning.

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie Yan. "AM-LFS: AutoML for Loss Function Search." ICCV 2019.

Can machine learn loss
function?

Yes!

Can machine learn free-form
loss function?

Hard!

Existing widely used loss functions

• Loss in identification task

• Uniform expression: Loss
Function

t(𝒙)

SphereFace 𝒄𝒐𝒔(𝒎 ∙ 𝒂𝒄𝒐𝒔 𝒙)

CosFace 𝒙 −𝒎

ArcFace 𝒄𝒐𝒔(𝒂𝒄𝒐𝒔 𝒙 +𝒎)

𝑳𝒊 = −𝒍𝒐𝒈
𝒆

𝑾𝒚𝒊
𝒙𝒊 𝒕 𝒄𝒐𝒔 𝜽𝒚𝒊

𝒆
𝑾𝒚𝒊

𝒙𝒊 𝒕 𝒄𝒐𝒔 𝜽𝒚𝒊 + σ𝒋≠𝒚𝒊
𝒆 𝑾𝒋 𝒙𝒊 𝒄𝒐𝒔 𝜽𝒋

Loss
Function

𝝉(𝒙)

FocalLoss 𝒙(𝟏−𝒙)
𝒎

𝑳𝒊 = −𝒍𝒐𝒈 𝝉
𝒆

𝑾𝒚𝒊
𝒙𝒊 𝒄𝒐𝒔 𝜽𝒚𝒊

𝒆
𝑾𝒚𝒊

𝒙𝒊 𝒄𝒐𝒔 𝜽𝒚𝒊 +σ𝒋≠𝒚𝒊
𝒆 𝑾𝒋 𝒙𝒊 𝒄𝒐𝒔 𝜽𝒋

• Loss in classification task

• Uniform expression:

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie Yan. "AM-LFS: AutoML for Loss Function Search." ICCV 2019.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5
Search Space of t and

section-1

section-2

section-3

Unified expression of Loss

• A unified expression containing all above losses (Fig. 1)

• Model 𝝉 and 𝒕 as piecewise linear function (Fig. 2)

𝑳𝒊 = −𝒍𝒐𝒈 𝝉
𝒆

𝑾𝒚𝒊
𝒙𝒊 𝒕 𝒄𝒐𝒔 𝜽𝒚𝒊

𝒆
𝑾𝒚𝒊

𝒙𝒊 𝒄𝒐𝒔 𝜽𝒚𝒊 + σ𝒋≠𝒚𝒊
𝒆 𝑾𝒋 𝒙𝒊 𝒄𝒐𝒔 𝜽𝒋

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie Yan. "AM-LFS: AutoML for Loss Function Search." ICCV 2019.

Unified expression of Loss

• Large portion of hand-crafted loss in different computer vision tasks
can be approximated using our unified expression of loss

𝑳𝒊 = −𝒍𝒐𝒈 𝝉
𝒆

𝑾𝒚𝒊
𝒙𝒊 𝒕 𝒄𝒐𝒔 𝜽𝒚𝒊

𝒆
𝑾𝒚𝒊

𝒙𝒊 𝒄𝒐𝒔 𝜽𝒚𝒊 + σ𝒋≠𝒚𝒊
𝒆 𝑾𝒋 𝒙𝒊 𝒄𝒐𝒔 𝜽𝒋

Unified expression of Loss - continue

• We use independent Gaussian distributions to model 𝝉 and 𝒕 ,
optimize its mean or even variance.

• The same OHL framework for auto-augmentation works well on
optimizing these parameters.

The convergence of these parameters.

Experimental results

• Results on classification
• Dataset: Cifar10+noise

Noise ratio Baseline Ours

0% 91.2 93.1

10% 87.9 89.9

20% 84.9 87.3

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie Yan. "AM-LFS: AutoML for Loss Function Search." ICCV 2019.

Outline

• Introduction

• Auto-ML

• Manual design

Manual design is not
important?

No!

Provides new possible structure and operations as the Search Space for NAS

Back-bone deep model design

• Basis structure of deep model
• AlexNet, VGG, GoogleNet, ResNet, DenseNet

• Validated on large-scale classification tasks such as ImageNet

• Models pretrained on ImageNet are found to be the effective initial model
for other tasks

Input Back-bone Task-specific design Output

FishNet: A Versatile
Backbone for Image, Region,

and Pixel Level Prediction
Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai

Yi, Wanli Ouyang, NurIPS. 2018

Low-level and high-level features

Image from Andrew Ng’s slides

Low-level

High-level

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region,
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.

Current CNN Structures

Image Classification:
Summarize high-level semantic
information of the whole image.

Detection/Segmentation:
High-level semantic meaning with
high spatial resolution

Called U-Net, Hourglass, or Conv-deconv

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region,
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.

Architectures designed for tasks of different granularities are
DIVERGING

Unify the advantages of networks for pixel-level,
region-level, and image-level tasks

Observation and design
• Design• Our observation

1. Diverged structures for tasks
requiring different resolutions.

1. Unify the advantages of
networks for pixel-level, region-
level, and image-level tasks.

Hourglass for Classification

Poor performance.

So what is the problem?

• Different tasks require different
resolutions of feature

Directly applying
hourglass for classification?

Features with high-level semantics and
high resolution is good

• Down sample high-level features
with high resolution

Our design

Observation and design

• Observation

1. Diverged structures for tasks
requiring different
resolutions.

2. Isolated Conv blocks the
direct back-propagation

• Design
1. Unify the advantages of networks

for pixel-level, region-level, and
image-level tasks.

Hourglass for Classification

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑜𝑢𝑡

1 × 1, 𝑐𝑜𝑢𝑡

𝑐𝑜𝑢𝑡

𝑆𝑡𝑟𝑖𝑑𝑒 = 2

The 𝟏 × 𝟏 convolution layer in yellow
indicates the Isolated convolution.

• Hourglass may bring more isolated
convolutions than ResNet

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑜𝑢𝑡

𝑐𝑜𝑢𝑡

Normal Res-Block Res-Block for
down/up sampling

Observation and design

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑖𝑛

C

Low-level
features 𝑐𝑜𝑢𝑡 −

𝑐𝑖𝑛
𝑐𝑜𝑢𝑡

C Concat

𝑢𝑝
/𝑑𝑜𝑤𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

Our design

• Observation

1. Diverged structures for tasks
requiring different
resolutions.

2. Isolated Conv blocks the
direct back-propagation

• Design
1. Unify the advantages of networks

for pixel-level, region-level, and
image-level tasks.

2. Design a network that does not
need isolated convolution

Observation and design

1. Diverged structures for tasks
requiring different
resolutions.

2. Isolated Conv blocks the
direct back-propagation

3. Features with different
depths are not fully explored,
or mixed but not preserved

1. Unify the advantages of networks for pixel-
level, region-level, and image-level tasks.

2. Design a network that does not need isolated
convolution

3. Features from varying depths are preserved
and refined from each other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’16.

• Observation • Design

Difference between mix and preserve and
refine

High level

Low level

Mixed features Preserve and refine

M

M Message generation

High level

Low level

+

conv

conv
Mixed

C= fA(A)+fB(B)

A

B

C

A

B B’

A’

A’= A+M1(A, B)
B’= B+M2(A, B)

Difference between mix and preserve and
refine

High
level

Low level

M

M Message generation

High
level

Low level

conv
High
level

Low level

+

conv

conv
Mixed

+

+

C= fA(A)+fB(B)
A’= A+M1(A, B)
B’= B+M2(A, B)

Preserve and refineMixed features

Observation and design

Solution
1. Diverged structures for tasks requiring

different resolutions.

2. Isolated Conv blocks the direct back-
propagation

3. Features with different depths are not fully
explored, or mixed but not preserved

Our observation
1. Unify the advantages of networks for pixel-

level, region-level, and image-level tasks.

2. Design a network that does not need isolated
convolution

3. Features from varying depths are preserved
and refined from each other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’16.

FishNet: Overview

224x224 … 56x56 28x28 14x14 7x7 14x14 28x28 56x56 28x28 14x14 7x7 1x1

… … … … … ……

Features in
the tail part

Features in
the body part

Residua
l Blocks

Features in
the head part

Concat

Fish
Tail

Fish
Body

Fish
Head

… … …

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region,
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.

FishNet: Preservation & Refinement

……

……
……

……

……

Transferring
Blocks T (⋅)

DR
Blocks

UR
Blocks

Regular
Connectio
ns

……

Fish
Tail

Fish
Body

Fish
Head

M
(⋅)

𝑑𝑜𝑤𝑛(⋅)

𝑢𝑝(
⋅)

𝑟(
⋅)

M(⋅
)

……

……

Up-sampling
and Refinement
(UR) Blocks

Down-sampling
and Refinement
(DR) Blocks

Feature from
varying
depth refines
each other
here

Sum up
every
𝒌 adjacent

channels
Conc
at

Conc
at

Nearest neighbor
up-sampling

𝟐 × 𝟐 Max-Pooling

From Tail

From
Body

From Body

From Head

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region,
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.

FishNet: Performance-ImageNet

22.59%

21.93%(5.92%)

21.55%(5.86…

21.25%(5. 76%)

23.78%(7.00

22.30%(6.2…

21.69%(5.9…

21.00%

21.50%

22.00%

22.50%

23.00%

23.50%

24.00%

10 20 30 40 50 60 70

FishNet

ResNet

Parameters, × 106

22.59%

21.93%

21.55%
21.25%

23.78%

22.30%

21.69%

21.00%

21.50%

22.00%

22.50%

23.00%

23.50%

24.00%

2 4 6 8 10 12

FishNet

ResNet

FLOP, × 109

T
o

p
-1

 E
rro

r

Code
https://github.com/kevin-ssy/FishNet

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region,
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.

FishNet: Performance-ImageNet

22.59%

21.93%(5.92%)

21.55%(5.86%)

21.25%(5. 76%)

22.58%(6.35%)

22.20%(6.20%)

22.15%(6.12%)

21.20%

23.78%(7.00%)

22.30%(6.20%)

21.69%(5.94%)

21.00%

21.50%

22.00%

22.50%

23.00%

23.50%

24.00%

10 20 30 40 50 60 70

FishNet

DenseNet

ResNet

T
o

p
-1

 E
rro

r

Parameters, × 106

Code
https://github.com/kevin-ssy/FishNet

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region,
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.

FishNet: Performance on COCO Detection and
Segmentation

38.00%

38.50%

39.00%

39.50%

40.00%

40.50%

41.00%

41.50%

42.00%

AP

R-50
RX-50
Fish-150

Code
https://github.com/kevin-ssy/FishNet

34.00%

34.50%

35.00%

35.50%

36.00%

36.50%

37.00%

37.50%

AP

R-50 RX-50

Fish-150

Detection Instance segmentation

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region,
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.

Winning COCO 2018 Instance Segmentation
Task

Visualization

Visualization

Visualization

Visualization

Visualization

Codebase

• Comprehensive

RPN Fast/Faster R-CNN

Mask R-CNN FPN

Cascade R-CNN RetinaNet

More … …

• High performance

Better performance

Optimized memory consumption

Faster speed

• Handy to develop

Written with PyTorch

Modular design

√

√

√

√

√

√

√

√

√

GitHub: mmdet
√

√

FishNet: Advantages

1.Better gradient flow to shallow layers

2.Features
➢contain rich low-level and high-level semantics

➢are preserved and refined from each other

Code
https://github.com/kevin-ssy/FishNet

Outline

• Introduction

• Auto-ML

• Manual design

• Conclusion

Summary

• Deep learning is effective by automatically learning features

• For a specific task, Auto-ML can automatically find the proper
network structure, data usage strategy, loss function, and more ...

• To tackle the problem from huge search space, online hyper-
parameter learning (OHL) and proxy are good choices

• Manual design from observation is still important

Q&A

