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Deep learning 

MIT Tech Review
Top 10 Breakthroughs 2013
Ranking No. 1

Turing award 2018

Hold records on most of the 
computer vision problems

Web-scale visual search, self-
driving cars, surveillance, 
multimedia … 

Simulate brain activities and employ millions of neurons to fit billions of training samples. Deep neural 
networks are trained with GPU clusters with tens of thousands of processors

Biology, Physics, Chemistry, Remote 
Sensing, … 



From Andrej Karpathy’s Twitter (09/Jan/2020)

• A recent post on Reddit: "Is it theoretically possible to do object 
recognition with classification algorithms other than NN’s?". 

• Just ~8 years ago you'd be more likely to find "Is it theoretically 
possible to do object recognition with NN’s?". That was a fun few 
years.



Deep learning vs non-deep learning

• Automatically learn features from data



Deep Learning – What’s Next?



Auto-ML



Deep learning vs non-deep learning

• Automatically learn features from data



Deep learning – not fully automatic

• Automatically learn features from data

• Data augmentation? 

• Loss function? 

• Number of layers? 

• What kind of operation in each layer?

• How one layer is connected to another layer?

• Number of channels at each layer?

• …

Manual tuning is required

Automatically learning them is possible by

AutoML

Achieved by deep learning



Auto-ML

• The problem of automatically (without human input) producing test set 
predictions for a new dataset within a fixed computational budget [a].

• Target: low error rate with low computational budget

[a] Feurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. "Efficient and 

robust automated machine learning." In Advances in neural information processing systems, pp. 2962-2970. 2015.

[b] Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR (2018)
[c] Shah, Syed Asif Raza, Wenji Wu, Qiming Lu, Liang Zhang, Sajith Sasidharan, Phil DeMar, Chin Guok et al. "AmoebaNet: An SDN-enabled 
network service for big data science." Journal of Network and Computer Applications 119 (2018): 70-82.

Architecture GPU Days Error Rate Method
NASNet-A [b] 1800 2.65 Reinforcement Learning

AmoebaNet-A [c] 3150 3.34 Evolution
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Online Hyper-parameter 
Learning for Auto-Augmentation 

Strategy
Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, 

and Junjie Yan

ICCV 2019



Auto-augment search – Existing work

• Search policy on a subsampled dataset and a predefined CNN
• Step 1: The controller generates an augmentation strategy S

• Step 2: Parameters of the CNN are learned using the augmentation strategy S

• Step 3: Get the validation accuracy R for the model with the strategy S

• Step 4: Use the accuracy as the reward for learning  the controller

Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).

Sample a strategy S (Operation 
type, probability and 

magnitude)
Train a child network with 
strategy S to get validation 

accuracy R

Use R to update the controller

The controller (RNN)



Auto-augment search – Motivation

• Difficulty:
• Slow evaluation of augmentation policy

• Slow convergence of RL due to the RNN controller

• Have to resort to small amount of data: 
• CIFAR-10: 8% subsampled

• IMAGENET: 0.5% subsampled

• Have to use very small network:
• CIFAR-10: WideResNet-40-2（small）

• IMAGENET: Wide-ResNet 40-2

• Solution: Treat augmentation policy search as a hyper-parameter 
learning

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Sub-optimal solution

Hard for large network

Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).



Hyperparameter Learning

• To learn the hyperparameters from data
• Hyperparameters can be

• Sampling strategy
• Loss weights

• Different from CNN architecture
• CNN architecture is transferable across different dataset
• Hyper-parameters in training strategy are KNOWN to be deeply coupled with 

specific dataset and underlying network architecture.

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.



Hyperparameter Learning -- Challenges

• Usually the hyper-parameters are not differentiable wrt validation 
loss.

• Full evaluation-based method using reinforcement learning, evolution, 
or Bayesian optimization is computationally expensive and 
implausible to be applied on industrial-scaled dataset.

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.



Our Solution: Online Hyperparameter Learning 
(OHL)
• What is OHL

• Online Hyper-parameter Learning aims to learning the best hyper-parameter 
within only a single run.

• While learning the hyper-parameters, it improves the performance of the 
model at mean time.

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.



Our Solution: Online Hyperparameter Learning 
(OHL)

• Hyper-parameter is modeled as 
random variables.

• Split the training stage into trunks
• Run multiple copies of current model, 

with different sampled hyper-
parameters.

• At the end of each trunk, we compute 
the reward of each copy by its 
performance on validation set.

• Update the hyper-parameter 
distribution using RL. 

• Distribute the best performing model

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.
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Initial Model
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Augmentation as hyperparameter

• For fair comparison, we apply the same search space with original 
auto-augment, with minor modification

• Each augmentation is a pair of operations eg.
• (HorizontalShear0.1, ColorAdjust0.6)
• (Rotate30, Contrast1.9)
• …

• In a stochastic point of view, the augmentation is a 
random variable:
• 𝑝𝜃(𝐴𝑢𝑔)
• 𝛼 is the weight parameter controls 

augmentation distribution.
• Learning augmentation strategy is learning 𝜃

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Elements Name Range of magnitude 

Horizontal Shear {0.1, 0.2, 0.3} 

Vertical Shear {0.1, 0.2, 0.3} 

Horizontal Translate {0.15, 0.3, 0.45} 

Vertical Translate {0.15, 0.3, 0.45} 

Rotate {10, 20, 30} 

Color Adjust {0.3, 0.6, 0.9} 

Posterize {4.4, 5.6, 6.8} 

Solarize {26, 102, 179} 

Contrast {1.3, 1.6, 1.9} 

Sharpness {1.3, 1.6, 1.9} 

Brightness {1.3, 1.6, 1.9}



Experimental Results - CIFAR10

• Using OHL, we train our performance model while learning alpha at 
the same time.
• On CIFAR10 (Top1 Error)
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Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).



Experimental Results - ImageNet

• On ImageNet (Top1/Top5 Error)
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Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.

Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).



Computation Required vs Offline Learning

96%

4%

IMAGENET

Autoaug

OHL-Autoaug

98%

2%

CIFAR-10

Autoaug

OHL-Autoaug

Lin, Chen, Minghao Guo, Chuming Li, Wei Wu, Dahua Lin, Wanli Ouyang, and Junjie Yan. "Online Hyper-parameter Learning for Auto-Augmentation Strategy." ICCV19.
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[a] Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501 (2018).

Dataset Auto-Augment [a] OHL-Auto-Aug

#Iterations Usage of 
Dataset (%)

#Iterations Usage of 
Dataset(%)

CIFAR-10 4.03 x 106 8% 1.17 x 105 100%

ImageNet 1.76 x 107 0.5% 7.5 x 105 100%

Need to retrain? Y N
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EcoNAS: Finding Proxies for Economical Neural 

Architecture Search

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, 
Shuai Yi, Xuesen Zhang, Wanli Ouyang

https://arxiv.org/abs/2001.01233



EcoNAS: Finding Proxies for Economical Neural 

Architecture Search

CVPR 2020
Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, 

Shuai Yi, Xuesen Zhang, Wanli Ouyang

https://arxiv.org/abs/2001.01233



Proxy

• A proxy is a computationally reduced setting, e.g. 
• Reduced input resolution

• Reduced number of channels

• Reduced number of samples

• Reduced number of training epochs

• Compared with the original network, the proxy has the same 
• Operation

• Number of layers

• Relative ratio for the numbers of channels between two layers

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.



Ops:

Exploration study on CIFAR-10

Network Structure (from DARTS [a])

3x3 avg pooling 3x3 Separable Conv

3x3 max pooling 5x5 Separable Conv

5x5 max pooling 7x7 Separable Conv

7x7 max pooling 3x3 Dilated Conv

Identity 1x3 then 3x1 Conv

1x1 Conv 1x7 then 7x1 Conv

3x3 Conv

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.

[a] Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055.



Exploration study on CIFAR-10

Specific reduction factors for CIFAR-10

Reduction Factor 0 1 2 3 4

Computation 1

20
1

21
1

22
1

23

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Training Epochs (e) 120 60 30



Exploration study on CIFAR-10

Specific reduction factors for CIFAR-10

Reduction Factor 0 1 2 3 4

Channels for CNN (c) 36 24 18 12 8

Resolution of input 
images (r)

32 24 16 12 8

Sample ratio of full 
training set (s)

1.0 0.5 0.25 0.125

Training Epochs (e) 120 60 30

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.



Existing proxies behave differently in maintaining rank consistency.

Real Ranking Ranking in Proxy 1 Ranking in Proxy 2

Network A 1 1 3

Network B 2 2 4

Network C 3 3 1

Network D 4 4 2

Good Proxy Bad Proxy

Example:

Finding reliable proxies is important for Neural Architecture Search.

Motivation

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.



Spearman Coefficient of original ranking (Ground-Truth Setting) and proxy ranking (reduced setting).

⚫ Value range [-1, 1], higher absolute value indicates stronger correlation.

⚫ Positive value for positive correlation, vice versa. 

How to evaluate Proxies?

A model sampled from the search space



With the same iteration numbers, using more training samples with fewer training epochs could 

be more effective than using more training epochs and fewer training samples.

Influence of sample ratio (s) and epochs (e)



Reducing the resolution of input images is sometimes feasible 

Reducing the number of channels of networks is more reliable than reducing the resolution. 

cxrys0e60
c0rxs0eycxr0s0ey

Influence of channels (c) and resolution (r)

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.



An efficient proxy does not necessarily have a poor rank consistency.

Efficient proxies

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.



1. Select a more efficient and consistent reduced setting as proxy.

2. Hierarchical proxy strategy: train networks with different proxies based on their accuracy.

EcoNAS: Economical evolutionary-based NAS

Setting: Three population sets PE, P2E, P3E, which store networks trained for E, 2E, 3E epochs, respectively.

For each cycle:

Step 1. A batch of networks are randomly sampled from PE, P2E, P3E and mutated. Networks with higher 

accuracy are more likely to be chosen. Train the mutated networks for E epochs and add them to PE.

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.

Step 2. Choose top networks from PE, P2E, load from checkpoints and train E more epochs, then add to P2E, P3E.

Step 3. Remove dead networks from all populations.



1. Reliable proxy and hierarchical proxy strategy will reduce both searching cost and error rate.

Reduced Setting
(w/o hierarchical proxy)

Cost
(GPU days)

Spearman 
Coefficient

Params. 
(M)

Error Rate (%)

AmoebaNet 3150 0.70 3.20 3.34 ± 0.06

C4r4s0e35 (ours) 12 0.74 3.18 2.94

EcoNAS ablation study on CIFAR-10

Reduced Setting
(w. hierarchical proxy)

Cost
(GPU days)

Spearman 
Coefficient

Params. 
(M)

Error Rate (%)

NASNet Proxy 21 0.65 2.89 3.20

C3r2s1e60 12 0.79 2.56 2.85

C4r4s0e60 (ours) 8 0.85 3.40 2.60



2. Reliable proxy settings can be adopted in other NAS methods.

EcoNAS ablation study

Method Setup
Cost

(GPU days)
Params. 

(M)
Error Rate (%)

DARTS (on CIFAR-10)
c2r0s0 1.5 3.2 3.0

c4r2s0 (ours) 0.3 5.0 2.8

ProxylessNAS
(on ImageNet)

c0r0s0-S 8 4.1 25.4

c0r0s0-L 8 6.9 23.3

c2r2s0

(ours)
4 5.3 23.2

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.



Not only save searching costs.

But also save re-training costs. Reliable proxies need not many networks to be re-trained.

Method
Number of Re-training
Networks

BlockQNN 100

NASNet 250

AmoebaNet 20

EcoNAS (ours) 5

EcoNAS analysis

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.



Provides more diverse structures, which allows searching algorithms to find accurate

structures with fewer costs.

Method Network numbers

BlockQNN 11k

NASNet 45k

AmoebaNet 20k

EcoNAS (ours) 1k

EcoNAS analysis

Zhou, Dongzhan, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli Ouyang. "EcoNAS: Finding 
Proxies for Economical Neural Architecture Search." CVPR, 2020.



EcoNAS results on CIFAR-10



EcoNAS results on ImageNet
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Computation Reallocation for 
Object Detection

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, 

Junjie Yan, Wanli Ouyang

ICLR 2020



Motivation

• How to decide the number of layers in each stage?

• The optimal number of layers at a stage is different for different tasks

• Backbone network directly from classification
• Shown to be sub-optimal, e.g. in DetNet for object detection.

in
p

u
t

st
emResNet50

Stage 1 Stage 2 Stage 3 Stage 4

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.



Motivation

• How to decide the number of layers in each stage?

• The optimal number of layers at a stage is different for different tasks

• Backbone network directly from classification
• Shown to be sub-optimal, e.g. in DetNet for object detection.

• Manual search?
• Too many choices

• High computational cost

• Solution: Computation Reallocation (CRNAS)

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.



Computation Reallocation(CRNAS)

We aim to reallocate the engaged computation cost in a more efficient 
way directly on the detection task. A two-level reallocation space is 
conducted to reallocate the computation across:

1. different resolution
• Reallocate the numbers of layers in different stages

• One-shot NAS + exhausted search

2. spatial position
• Introducing dilated conv search space

• One-shot NAS + greedy search

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.



Related work

• DetNAS [a] attempted to modify the backbone network automatically 
by NAS, but it inherits the search space directly from classification.

[a] Chen, Yukang, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Chunhong Pan, and Jian Sun. 

"Detnas: Neural architecture search on object detection." arXiv preprint arXiv:1903.10979 (2019).

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.



Stage reallocation in different resolution

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.
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Stage reallocation in different resolution

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.
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Dilation reallocation in spatial position

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.
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Interpretation of final NAS model

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Two trends:
• More blocks in deeper stage: more resources in deeper stage is preferred. 

• More dilated conv in deeper stage: Further explore the network potential to detect large objects.
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Analysis of ERF in the FPN

ImageNet classification:
• Input size: 224 * 224

• ERF can be easily satisfied

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

COCO detection:
• Input size: 800 * 1333

• sizes of objects vary from 32 to 800 

• ERF need more capacities to handle scale variance across the 
instance

Our SCR-ResNet50 has more balanced effective receptive field (ERF) across all resolutions, which leads to higher 
performance

Effective receptive field (ERF) [a]: small Gaussian-like factor of theoretical receptive field (TRF), but it 
dominates the output.

[a]] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks. In ICCV, pp. 764–773, 2017.



Visualization of ERF in the FPN

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

ResNet50

SCR-ResNet50

P4 P5P3

FPN:

Our SCR-ResNet50 has more balanced effective receptive field (ERF) across all resolutions, which leads to higher 
performance

Effective receptive field (ERF) [a]: small Gaussian-like factor of theoretical receptive field (TRF), but it 
dominates the output.

[a]] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convolutional networks. In ICCV, pp. 764–773, 2017.
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COCO: Consistent gain without additional computation 
budget.

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.

Backbone FLOPs(G) 

CR-ResNet101 257.5

ResNet101 257.3

CR-ResNet50 192.7

ResNet50 192.5

CR-ResNet18 147.6

ResNet18 147.7

CR-MobileNetV2 121.4

MobileNetV2 121.1



Transfer-ability over other dataset(VOC), other powerful 
neck/head(NAS-FPN) and other vision task(instance 
segementation).

Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu, Junjie Yan, Wanli Ouyang. "Computation Reallocation for Object Detection." ICLR 2020.
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ResNet101

+CRNet Origianal

33.1

37.6

39.7

34.6

39.1

41.5
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MobileNetV2

ResNet50

ResNet101

+CRNet Origianal

Segmentation Detection
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AM-LFS: AutoML for Loss 
Function Search

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie
Yan

ICCV 2019



Motivation

• Loss function plays an important role in visual analysis.

• Problem of existing loss function designs
• heavily rely on domain experts to explore the large design space

• usually time-consuming 

• cannot be adapted to the data.

• Using different loss functions in different training stages had been 
observed effective under certain conditions, e.g. curriculum learning.

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie Yan. "AM-LFS: AutoML for Loss Function Search." ICCV 2019.



Can machine learn loss 
function?

Yes!



Can machine learn free-form 
loss function?

Hard!



Existing widely used loss functions

• Loss in identification task

• Uniform expression: Loss 
Function

t(𝒙)

SphereFace 𝒄𝒐𝒔(𝒎 ∙ 𝒂𝒄𝒐𝒔 𝒙 )

CosFace 𝒙 −𝒎

ArcFace 𝒄𝒐𝒔(𝒂𝒄𝒐𝒔 𝒙 +𝒎)

𝑳𝒊 = −𝒍𝒐𝒈
𝒆

𝑾𝒚𝒊
𝒙𝒊 𝒕 𝒄𝒐𝒔 𝜽𝒚𝒊

𝒆
𝑾𝒚𝒊

𝒙𝒊 𝒕 𝒄𝒐𝒔 𝜽𝒚𝒊 + σ𝒋≠𝒚𝒊
𝒆 𝑾𝒋 𝒙𝒊 𝒄𝒐𝒔 𝜽𝒋

Loss 
Function

𝝉(𝒙)

FocalLoss 𝒙(𝟏−𝒙)
𝒎

𝑳𝒊 = −𝒍𝒐𝒈 𝝉
𝒆

𝑾𝒚𝒊
𝒙𝒊 𝒄𝒐𝒔 𝜽𝒚𝒊

𝒆
𝑾𝒚𝒊

𝒙𝒊 𝒄𝒐𝒔 𝜽𝒚𝒊 +σ𝒋≠𝒚𝒊
𝒆 𝑾𝒋 𝒙𝒊 𝒄𝒐𝒔 𝜽𝒋

• Loss in classification task

• Uniform expression:

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie Yan. "AM-LFS: AutoML for Loss Function Search." ICCV 2019.
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Unified expression of Loss

• A unified expression containing all above losses (Fig. 1)

• Model 𝝉 and 𝒕 as piecewise linear function (Fig. 2)

𝑳𝒊 = −𝒍𝒐𝒈 𝝉
𝒆

𝑾𝒚𝒊
𝒙𝒊 𝒕 𝒄𝒐𝒔 𝜽𝒚𝒊

𝒆
𝑾𝒚𝒊

𝒙𝒊 𝒄𝒐𝒔 𝜽𝒚𝒊 + σ𝒋≠𝒚𝒊
𝒆 𝑾𝒋 𝒙𝒊 𝒄𝒐𝒔 𝜽𝒋

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie Yan. "AM-LFS: AutoML for Loss Function Search." ICCV 2019.



Unified expression of Loss

• Large portion of hand-crafted loss in different computer vision tasks 
can be approximated using our unified expression of loss

𝑳𝒊 = −𝒍𝒐𝒈 𝝉
𝒆

𝑾𝒚𝒊
𝒙𝒊 𝒕 𝒄𝒐𝒔 𝜽𝒚𝒊

𝒆
𝑾𝒚𝒊

𝒙𝒊 𝒄𝒐𝒔 𝜽𝒚𝒊 + σ𝒋≠𝒚𝒊
𝒆 𝑾𝒋 𝒙𝒊 𝒄𝒐𝒔 𝜽𝒋



Unified expression of Loss - continue

• We use independent Gaussian distributions to model 𝝉 and 𝒕 , 
optimize its mean or even variance.

• The same OHL framework for auto-augmentation works well on 
optimizing these parameters.

The convergence of these parameters.



Experimental results

• Results on classification
• Dataset: Cifar10+noise

Noise ratio Baseline Ours

0% 91.2 93.1

10% 87.9 89.9

20% 84.9 87.3

Li, Chuming, Chen Lin, Minghao Guo, Wei Wu, Wanli Ouyang, and Junjie Yan. "AM-LFS: AutoML for Loss Function Search." ICCV 2019.



Outline

• Introduction

• Auto-ML

• Manual design



Manual design is not 
important?

No!

Provides new possible structure and operations as the Search Space for NAS



Back-bone deep model design

• Basis structure of deep model
• AlexNet, VGG, GoogleNet, ResNet, DenseNet

• Validated on large-scale classification tasks such as ImageNet

• Models pretrained on ImageNet are found to be the effective initial model 
for other tasks

Input Back-bone Task-specific design Output



FishNet: A Versatile 
Backbone for Image, Region, 

and Pixel Level Prediction
Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai 

Yi, Wanli Ouyang, NurIPS. 2018



Low-level and high-level features

Image from Andrew Ng’s slides

Low-level

High-level

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region, 
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.



Current CNN Structures

Image Classification: 
Summarize high-level semantic 
information of the whole image.

Detection/Segmentation:
High-level semantic meaning with 
high spatial resolution

Called U-Net, Hourglass, or Conv-deconv

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region, 
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.



Architectures designed for tasks of different granularities are
DIVERGING



Unify the advantages of networks for pixel-level, 
region-level, and image-level tasks



Observation and design
• Design• Our observation

1. Diverged structures for tasks 
requiring different resolutions.

1. Unify the advantages of 
networks for pixel-level, region-
level, and image-level tasks.



Hourglass for Classification

Poor performance.

So what is the problem?

• Different tasks require different 
resolutions of feature

Directly applying 
hourglass for classification?

Features with high-level semantics and 
high resolution is good

• Down sample high-level features 
with high resolution

Our design



Observation and design

• Observation

1. Diverged structures for tasks 
requiring different 
resolutions.

2. Isolated Conv blocks the 
direct back-propagation

• Design
1. Unify the advantages of networks 

for pixel-level, region-level, and 
image-level tasks.



Hourglass for Classification

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑜𝑢𝑡

1 × 1, 𝑐𝑜𝑢𝑡

𝑐𝑜𝑢𝑡

𝑆𝑡𝑟𝑖𝑑𝑒 = 2

The 𝟏 × 𝟏 convolution layer in yellow
indicates the Isolated convolution.

• Hourglass may bring more isolated 
convolutions than ResNet

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑜𝑢𝑡

𝑐𝑜𝑢𝑡

Normal Res-Block Res-Block for 
down/up sampling



Observation and design

1 × 1, 𝑐𝑖𝑛

3 × 3, 𝑐𝑖𝑛

1 × 1, 𝑐𝑖𝑛

C

Low-level 
features 𝑐𝑜𝑢𝑡 −

𝑐𝑖𝑛
𝑐𝑜𝑢𝑡

C Concat

𝑢𝑝
/𝑑𝑜𝑤𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

Our design

• Observation

1. Diverged structures for tasks 
requiring different 
resolutions.

2. Isolated Conv blocks the 
direct back-propagation

• Design
1. Unify the advantages of networks 

for pixel-level, region-level, and 
image-level tasks.

2. Design a network that does not 
need isolated convolution



Observation and design

1. Diverged structures for tasks 
requiring different 
resolutions.

2. Isolated Conv blocks the 
direct back-propagation

3. Features with different 
depths are not fully explored, 
or mixed but not preserved

1. Unify the advantages of networks for pixel-
level, region-level, and image-level tasks.

2. Design a network that does not need isolated 
convolution

3. Features from varying depths are preserved 
and refined from each other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’16.

• Observation • Design



Difference between mix and preserve and 
refine

High level

Low level

Mixed features Preserve and refine

M

M Message generation

High level

Low level

+

conv

conv
Mixed

C= fA(A)+fB(B)

A

B

C

A

B B’

A’

A’= A+M1(A, B)
B’= B+M2(A, B)



Difference between mix and preserve and 
refine

High 
level

Low level

M

M Message generation

High 
level

Low level

conv
High 
level

Low level

+

conv

conv
Mixed

+

+

C= fA(A)+fB(B)
A’= A+M1(A, B)
B’= B+M2(A, B)

Preserve and refineMixed features



Observation and design

Solution
1. Diverged structures for tasks requiring 

different resolutions.

2. Isolated Conv blocks the direct back-
propagation

3. Features with different depths are not fully 
explored, or mixed but not preserved

Our observation
1. Unify the advantages of networks for pixel-

level, region-level, and image-level tasks.

2. Design a network that does not need isolated 
convolution

3. Features from varying depths are preserved 
and refined from each other.

Bharath Hariharan, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR’15.
Newell, Alejandro, Kaiyu Yang, and Jia Deng. "Stacked hourglass networks for human pose estimation." ECCV’16.



FishNet: Overview

224x224 … 56x56 28x28 14x14 7x7 14x14 28x28 56x56 28x28 14x14 7x7 1x1

… … … … … ……

Features in 
the tail part

Features in 
the body part

Residua
l Blocks

Features in
the head part

Concat

Fish 
Tail

Fish 
Body

Fish 
Head

… … …

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region, 
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.



FishNet: Preservation & Refinement

……

……
……

……

……

Transferring
Blocks T  (⋅)

DR 
Blocks

UR 
Blocks

Regular 
Connectio
ns

……

Fish
Tail

Fish
Body

Fish
Head

M
(⋅)

𝑑𝑜𝑤𝑛(⋅)

𝑢𝑝(
⋅)

𝑟(
⋅)

M(⋅
)

……

……

Up-sampling 
and Refinement 
(UR) Blocks

Down-sampling 
and Refinement 
(DR) Blocks

Feature from 
varying 
depth refines 
each other
here

Sum up 
every
𝒌 adjacent 

channels
Conc
at

Conc
at

Nearest neighbor 
up-sampling

𝟐 × 𝟐 Max-Pooling

From Tail

From 
Body

From Body

From Head

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region, 
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.



FishNet: Performance-ImageNet

22.59%

21.93%(5.92%)

21.55%(5.86…
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Code
https://github.com/kevin-ssy/FishNet

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region, 
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.



FishNet: Performance-ImageNet
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Code
https://github.com/kevin-ssy/FishNet

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region, 
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.



FishNet: Performance on COCO Detection and 
Segmentation

38.00%

38.50%

39.00%

39.50%
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Code
https://github.com/kevin-ssy/FishNet
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Detection Instance segmentation

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang , "FishNet: A Versatile Backbone for Image, Region, 
and Pixel Level Prediction," NurIPS. (Previously called NIPS), 2018.



Winning COCO 2018 Instance Segmentation 
Task



Visualization



Visualization



Visualization



Visualization



Visualization



Codebase

• Comprehensive

RPN                     Fast/Faster R-CNN

Mask R-CNN FPN

Cascade R-CNN           RetinaNet

More … …

• High performance

Better performance

Optimized memory consumption 

Faster speed

• Handy to develop

Written with PyTorch

Modular design

√

√

√

√

√

√

√

√

√

GitHub: mmdet
√

√



FishNet: Advantages

1.Better gradient flow to shallow layers

2.Features 
➢contain rich low-level and high-level semantics

➢are preserved and refined from each other

Code
https://github.com/kevin-ssy/FishNet



Outline

• Introduction

• Auto-ML

• Manual design

• Conclusion



Summary

• Deep learning is effective by automatically learning features

• For a specific task, Auto-ML can automatically find the proper 
network structure, data usage strategy, loss function, and more ...

• To tackle the problem from huge search space, online hyper-
parameter learning (OHL) and proxy are good choices

• Manual design from observation is still important



Q&A




